Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
AAPS PharmSciTech ; 21(7): 285, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33057878

ABSTRACT

Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs. The study focused on the encapsulation of the ACV in lipid polymeric particle and their sustained delivery. The formulation developed for the self-assembly of chitosan and lecithin to form a shell encapsulating acyclovir, followed by PEGylation. Optimisation was performed via Box-Behnken Design (BBD), forming nanoparticles with size of 187.7 ± 3.75 nm, 83.81 ± 1.93% drug-entrapped efficiency (EE), and + 37.7 ± 1.16 mV zeta potential. Scanning electron microscopy and transmission electron microscopy images displayed spherical nanoparticles formation. Encapsulation of ACV and complexity with other physical parameters are confirmed through analysis using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Nanoparticle produced was capable of achieving 24-h sustained release in vitro on gastric and intestinal environments. Ex vivo study proved the improvement of acyclovir's apparent permeability from 2 × 10-6 to 6.46 × 10-6 cm s-1. Acyclovir new formulation was achieved to be stable up to 60 days for controlled release of the drugs. Graphical abstract.


Subject(s)
Acyclovir/administration & dosage , Antiviral Agents/administration & dosage , Acyclovir/pharmacokinetics , Animals , Antiviral Agents/pharmacokinetics , Chitosan , Delayed-Action Preparations , Drug Compounding , Drug Stability , Intestinal Absorption , Lecithins , Lipids/chemistry , Nanoparticles , Particle Size , Polyethylene Glycols , Rabbits
2.
Int J Mol Sci ; 20(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635374

ABSTRACT

Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers. SEM revealed that there was a decrease in the fiber diameter (ranging from 360 to 770 nm) upon the addition of AV, CUR and TCH in PCL nanofibers, which were randomly oriented with bead free morphology. FTIR spectra of various electrospun samples confirmed the successful incorporation of AV, CUR and TCH into the PCL nanofibers. The fabricated nanofibrous scaffolds possessed mechanical properties within the range of human skin. The biocompatibility of electrospun nanofibrous scaffolds were evaluated on primary human dermal fibroblasts (hDF) by MTS assay, CMFDA, Sirius red and F-actin stainings. The results showed that the fabricated PCL/AV/CUR and PCL/AV/TCH nanofibrous scaffolds were non-toxic and had the potential for wound healing applications. The disc diffusion assay confirmed that the electrospun nanofibrous scaffolds possessed antibacterial activity and provided an effective wound dressing for skin tissue engineering.


Subject(s)
Aloe/chemistry , Biocompatible Materials/chemistry , Nanofibers , Skin , Tetracycline/administration & dosage , Tissue Engineering , Tissue Scaffolds , Anti-Bacterial Agents/administration & dosage , Biomarkers , Cell Proliferation , Cell Survival , Drug Liberation , Fibroblasts , Humans , Materials Testing , Mechanical Phenomena , Microbial Sensitivity Tests , Nanofibers/chemistry , Nanofibers/ultrastructure , Spectrum Analysis , Tetracycline/chemistry , Tissue Scaffolds/chemistry , Wound Healing
3.
Nanomedicine ; 12(7): 2181-2200, 2016 10.
Article in English | MEDLINE | ID: mdl-27247186

ABSTRACT

Tissue engineering aims to develop therapeutic products that utilize a combination of scaffolds with viable cell systems or responsive biomolecules derived from such cells, for the repair, restoration/regeneration of tissues. Here, the main goal is to enable the body to heal itself by the introduction of electrospun scaffolds, such that the body recognizes them as its own and in turn uses them to regenerate "neo-native" functional tissues. During the last decade, innovative nanofibrous scaffolds have attracted substantial interest in bone tissue engineering. The electrospinning process makes it possible to fabricate appropriate scaffolds for bone tissue engineering from different categories of nanobiomaterials having the ability of controlled delivery of drugs in the defective tissues. It is expected that with the progress in science and technology, better bone constructs will be proposed in the future. This review discusses the innovative approaches into electrospinning techniques for the fabrication of nanofibrous scaffolds for bone tissue engineering.


Subject(s)
Bone and Bones , Nanofibers , Tissue Engineering , Humans , Regeneration , Tissue Scaffolds
4.
Int J Mol Sci ; 17(8)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27483240

ABSTRACT

Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH) nanoparticles initiate human mesenchymal stem cells (MSCs) proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM), contact angle and Fourier transform infrared spectroscopy (FT-IR). The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) MTS assay (Promega, Madison, WI, USA), FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA) dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP) and mineralization was confirmed by using alizarin red (ARS). The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Mesenchymal Stem Cells/cytology , Minocycline/pharmacology , Nanoparticles/administration & dosage , Osteogenesis/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Cell Adhesion/drug effects , Cells, Cultured , Extracellular Matrix/drug effects , Fibroins/pharmacology , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Humans , Mesenchymal Stem Cells/drug effects , Mice , Minocycline/administration & dosage , NIH 3T3 Cells , Polyesters/pharmacology , Silk/chemistry , Tissue Engineering , Tissue Scaffolds
5.
J Nanosci Nanotechnol ; 15(4): 2591-604, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26353470

ABSTRACT

Pharmaceutically active compounds require different modes of drug delivery systems to accomplish therapeutic activity without loss of its activity and lead to exhibit no adverse effects. Originating from ancient days, pulmonary mode of drug delivery is gaining much importance compared to other modes of drug delivery systems with respect to specific diseases. Pulmonary drug delivery is a non-invasive route for local and systemic therapies together with more patient convenience, compliance and is a needleless system. In this review, we addressed the vaccine delivery via non- or minimally invasive routes. Polymeric nanoparticles are preferred for use in the pulmonary delivery devices owing to a prolonged retention in lungs. Small site for absorption, mucociliary clearance, short residence time and low bioavailability are some of the limitations in pulmonary drug delivery have been resolved by generating micro- and nano-sized aerosol particles. We have classified the breathable medicine on the basis of available devices for inhalation and also prominent diseases treated through pulmonary mode of drug delivery. Owing to increasing toxicity of pharmacological drugs, the use of natural medicines has been rapidly gaining importance recently. The review article describes breathability of medicines or the pulmonary mode of drug delivery system and their drug release profile, absorption, distribution and efficacy to cure asthma and diabetes.


Subject(s)
Administration, Inhalation , Drug Delivery Systems , Nanomedicine , Nanoparticles/administration & dosage , Humans , Lung/metabolism , Lung/physiology , Plant Extracts/administration & dosage , Powders , Vaccines/administration & dosage
6.
J Cell Biochem ; 115(4): 794-803, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24265214

ABSTRACT

Wound healing is a major problem in diabetic patients and current methods of treatment have met with limited success. Since skin cell renewal is under the control of mesenchymal stem cells (MSCs) treatment of wounds has been attempted with the application of exogenous bone marrow MSCs (hBMMSCs). However, hBMMSCs have the limitations of painful harvest, low cell numbers and short-lived stemness properties unlike MSCs from the Wharton's jelly of human umbilical cords (hWJSCs). Since nanoscaffolds provide three dimensional architectural patterns that mimic in vivo stem cell niches and aloe vera has antibacterial properties we evaluated the use of an aloe vera-polycaprolactone (AV/PCL) nanoscaffold impregnated with green fluorescent protein (GFP)-labeled hWJSCs (GFP-hWJSCs + AV/PCL) or its conditioned medium (hWJSC-CM + AV/PCL) for healing of excisional and diabetic wounds. In skin fibroblast scratch-wound assays exposed to GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL, fibroblasts migrated significantly faster from edges of scratches into vacant areas together with increased secretion of collagen I and III, elastin, fibronectin, superoxide dismutase, and metalloproteinase-1 (MMP-1) compared to controls. After one application of GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL excisional and diabetic wounds in mice showed rapid wound closure, reepithelialization, and increased numbers of sebaceous glands and hair follicles compared to controls. The same wounds exposed to GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL also showed positive keratinocyte markers (cytokeratin, involucrin, filaggrin) and increased expression of ICAM-1, TIMP-1, and VEGF-A compared to controls. AV/PCL nanoscaffolds in combination with hWJSCs appear to have synergistic benefits for wound healing.


Subject(s)
Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cells/metabolism , Nanostructures/chemistry , Wound Healing , Aloe/chemistry , Animals , Bandages , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Female , Filaggrin Proteins , Gene Expression Regulation , Humans , Mice, SCID , Polyesters/pharmacology , Wound Healing/drug effects , Wound Healing/genetics
7.
J Mater Sci Mater Med ; 25(11): 2579-89, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25011500

ABSTRACT

Liver tissue engineering using polymeric nanofibrous scaffold and stem cells holds great promises for treating end-stage liver failures. The aim of this study was to evaluate hepatic trans-differentiation potential of human mesenchymal stem cells (hMSCs) on a biomagnetic electrospun nanofibrous scaffold fabricated from a blend of poly-L-lactide (PLLA), collagen and fibrin-rich blood clot, under the influence of a low frequency magnetic field. The scaffold was characterized for surface properties, biochemical and biomechanical parameters and bio-magnetic behaviour. Cell proliferation assay revealed that the scaffold was suitable for hMSCs adhesion and proliferation. Hepatic trans-differentiation potential of hMSCs was augmented on nanofibrous scaffold in magnetic field exposure group compared to control groups, as evident by strong expression of hepatocyte specific markers, albumin release, urea synthesis and presence of an inducible cytochrome P450 system. Our results conclude that biomagnetic scaffold of PLLA/collagen/blood clot augments hepatic trans-differentiation of hMSCs under magnetic field influence.


Subject(s)
Hepatocytes/cytology , Hepatocytes/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Nanofibers/chemistry , Tissue Scaffolds , Cell Adhesion/physiology , Cell Adhesion/radiation effects , Cell Differentiation/physiology , Cell Differentiation/radiation effects , Cell Proliferation/physiology , Cell Proliferation/radiation effects , Cells, Cultured , Compressive Strength , Elastic Modulus , Hepatocytes/radiation effects , Humans , Magnetic Fields , Mechanotransduction, Cellular/physiology , Mechanotransduction, Cellular/radiation effects , Mesenchymal Stem Cells/radiation effects , Nanofibers/radiation effects , Nanofibers/ultrastructure , Particle Size , Stress, Mechanical , Tensile Strength
8.
J Mater Sci Mater Med ; 24(12): 2863-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23999881

ABSTRACT

Every year, millions of people suffer from dermal wounds caused by heat, fire, chemicals, electricity, ultraviolet radiation or disease. Tissue engineering and nanotechnology have enabled the engineering of nanostructured materials to meet the current challenges in skin treatments owing to such rising occurrences of accidental damages, skin diseases and defects. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for skin regeneration. The nanofibrous PVA/gelatin/azide scaffolds were then fabricated by electrospinning using water as solvent and allowed to undergo click reaction. The scaffolds were characterized by SEM, contact angle and FTIR. The cell-scaffold interactions were analyzed by cell proliferation and the results observed that the rate of cell proliferation was significantly increased (P ≤ 0.05) on PVA/gelatin/azide scaffolds compared to PVA/gelatin nanofibers. In the present study, manipulating the biochemical cues by the addition of an induction medium, in combination with environmental and physical factors of the culture substrate by functionalizing with click moieties, we were able to drive ADSCs into epidermal lineage with the development of epidermis-like structures, was further confirmed by the expression of early and intermediate epidermal differentiation markers like keratin and filaggrin. This study not only provides an insight into the design of a site-specific niche-like microenvironment for stem cell lineage commitment, but also sheds light on the therapeutic application of an alternative cell source-ADSCs, for wound healing and skin tissue reconstitution.


Subject(s)
Adipocytes/cytology , Click Chemistry/methods , Keratinocytes/cytology , Nanofibers/chemistry , Polyvinyls/chemistry , Skin/pathology , Stem Cells/cytology , Azides/chemistry , Cell Differentiation , Cell Lineage , Cell Proliferation , Epidermis/pathology , Filaggrin Proteins , Gelatin/chemistry , Humans , Skin, Artificial , Surface Properties , Tissue Engineering/methods , Tissue Scaffolds , Wound Healing
9.
ACS Biomater Sci Eng ; 9(11): 6357-6368, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37847169

ABSTRACT

Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture. In the current study, we fabricated liver-specific nanofiber scaffolds with polylactic acid (PLA) along with a decellularized liver extracellular matrix (LEM) by the electrospinning technique. The fabricated hybrid PLA-LEM scaffolds were more hydrophilic and had better swelling properties than the PLA scaffolds. The hybrid scaffolds had a pore size of 38 ± 8 µm and supported primary rat hepatocyte cultures for 10 days. Increased viability (2-fold increase in the number of live cells) and functionality (5-fold increase in albumin secretion) were observed in primary hepatocytes cultured on the PLA-LEM scaffolds as compared to those on conventional collagen-coated plates on day 10 of culture. A significant increase in CYP1A2 enzyme activity was observed in hepatocytes cultured on PLA-LEM hybrid scaffolds in comparison to those on collagen upon induction with phenobarbital. Drugs like acetaminophen and rifampicin showed the highest toxicity in hepatocytes cultured on hybrid scaffolds. Also, the lethal dose of these drugs in rodents was accurately predicted as 1.6 g/kg and 594 mg/kg, respectively, from the corresponding IC50 values obtained from drug-treated hepatocytes on hybrid scaffolds. Thus, the fabricated liver-specific electrospun scaffolds maintained primary hepatocyte viability and functionality for an extended period in culture and served as an effective ex vivo drug screening platform to predict an accurate in vivo drug-induced hepatotoxicity.


Subject(s)
Nanofibers , Rats , Animals , Drug Evaluation, Preclinical , Tissue Scaffolds , Hepatocytes/metabolism , Liver , Extracellular Matrix , Collagen/metabolism , Polyesters/pharmacology , Polyesters/metabolism
11.
Nanotechnology ; 23(38): 385102, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22947662

ABSTRACT

Myocardial tissue lacks the ability to appreciably regenerate itself following myocardial infarction (MI) which ultimately results in heart failure. Current therapies can only retard the progression of disease and hence tissue engineering strategies are required to facilitate the engineering of a suitable biomaterial to repair MI. The aim of this study was to investigate the in vitro properties of an injectable biomaterial for the regeneration of infarcted myocardium. Fabrication of core/shell fibers was by co-axial electrospinning, with poly(glycerol sebacate) (PGS) as core material and poly-L-lactic acid (PLLA) as shell material. The PLLA was removed by treatment of the PGS/PLLA core/shell fibers with DCM:hexane (2:1) to obtain PGS short fibers. These PGS short fibers offer the advantage of providing a minimally invasive injectable technique for the regeneration of infarcted myocardium. The scaffolds were characterized by SEM, FTIR and contact angle and cell-scaffold interactions using cardiomyocytes. The results showed that the cardiac marker proteins actinin, troponin, myosin heavy chain and connexin 43 were expressed more on short PGS fibers compared to PLLA nanofibers. We hypothesized that the injection of cells along with short PGS fibers would increase cell transplant retention and survival within the infarct, compared to the standard cell injection system.


Subject(s)
Decanoates/chemistry , Glycerol/analogs & derivatives , Guided Tissue Regeneration/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Nanostructures/chemistry , Nanostructures/ultrastructure , Polymers/chemistry , Tissue Engineering/methods , Animals , Cell Proliferation , Cell Survival , Cells, Cultured , Crystallization/methods , Glycerol/chemistry , Injections , Materials Testing , Minimally Invasive Surgical Procedures , Particle Size , Rabbits , Regeneration/physiology , Surface Properties
12.
Biomimetics (Basel) ; 7(4)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36278706

ABSTRACT

The major goal of liver tissue engineering is to reproduce the phenotype and functions of liver cells, especially primary hepatocytes ex vivo. Several strategies have been explored in the recent past for culturing the liver cells in the most apt environment using biological scaffolds supporting hepatocyte growth and differentiation. Nanofibrous scaffolds have been widely used in the field of tissue engineering for their increased surface-to-volume ratio and increased porosity, and their close resemblance with the native tissue extracellular matrix (ECM) environment. Electrospinning is one of the most preferred techniques to produce nanofiber scaffolds. In the current review, we have discussed the various technical aspects of electrospinning that have been employed for scaffold development for different types of liver cells. We have highlighted the use of synthetic and natural electrospun polymers along with liver ECM in the fabrication of these scaffolds. We have also described novel strategies that include modifications, such as galactosylation, matrix protein incorporation, etc., in the electrospun scaffolds that have evolved to support the long-term growth and viability of the primary hepatocytes.

13.
Int J Biol Macromol ; 198: 147-156, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34971642

ABSTRACT

This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.


Subject(s)
Nanofibers
14.
Micromachines (Basel) ; 13(6)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35744583

ABSTRACT

Particle synthesis has seen significant advances in current trends. However, the synthesis of metal particles without oxidation is a challenge for researchers. The current study presents a straightforward, convenient, and convincing approach for manufacturing copper (Cu) particles free of surface oxide. The die-sink Electrical Discharge Machine (EDM) of copper alloys with oleic acid resulted in the formation of Cu particles with diameters between 10 to 20 µm. X-ray diffraction (XRD) was used for particle examination after cleaning and sonication with distilled water. Cu particles with oleic acid coating retained a Cu phase without oxidation after synthesis. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to determine the size and morphology of generated particles. Fourier transforms infrared (FT-IR) analysis revealed the oleic acid-coated Cu surface bonded with an oxygen atom. Also, the agglomeration and change of size involving Cu particles with increasing voltages in the pulse supply in EDM were reported.

15.
Cell Biol Int ; 35(1): 73-80, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20923413

ABSTRACT

Several studies are currently ongoing to construct synthetic bone-like materials with composites of natural and polymeric materials with HA (hydroxyapatite). The present study aims to fabricate composite nanofibrous substrate of Chit/HA (chitosan/HA - 80:25) prepared by dissolving in TFA/DCM (trifluoroacetic acid/dichloromethane) (70:30, w/w) for 5 days and electrospun to fabricate a scaffold for bone tissue engineering. HA (25 wt %) was sonicated for 30 min to obtain a homogenous dispersion of nanoparticles within the Chit (80 wt %) matrix for fabricating composite nanofibrous scaffold (Chit/HA). The nanofibres of Chit and Chit/HA were obtained with fibre diameters of 274 ± 75 and 510 ± 198 nm, respectively, and characterized by FESEM (field emission scanning electron microscopy) and FTIR (Fourier transform infrared). The interaction of hFOBs (human fetal osteoblasts) and nanofibrous substrates were analysed for cell morphology (FESEM), mineralization [ARS (Alizarin Red-S) staining], quantification of minerals and finally identified the elements present in Chit/HA/osteoblasts by EDX (energy-dispersive X-ray) analysis. EDX analysis confirmed that the spherulites contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of the bone. Mineralization was increased significantly (P<0.001) up to 108% in Chit/HA compared with Chit nanofibres. These results confirmed that the electrospun composite Chit/HA nanofibrous substrate is a potential biocomposite material for the proliferation and mineralization of hFOBs required for enhanced bone tissue regeneration.


Subject(s)
Bone Regeneration , Nanofibers/chemistry , Osteoblasts/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Calcification, Physiologic , Cells, Cultured , Chitosan/chemistry , Humans , Hydroxyapatites/chemistry , Materials Testing , Osteoblasts/physiology , Tissue Engineering
16.
J Mater Sci Mater Med ; 22(7): 1689-99, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21617996

ABSTRACT

In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of (L)-lactic acid with trimethylene carbonate (P(L)LA-co-TMC) are investigated in comparison to electrospun poly(L)lactic acid. The P(L)LA-co-TMC scaffold used in this work is a glassy rigid material at room temperature while it is a rubbery soft material at 37 °C. Mechanical characterization results (tensile stress-strain and creep-recovery measurements) show that at 37 °C electrospun P(L)LA-co-TMC displays an elastic modulus of around 20 MPa and the ability to completely recover up to 10% of deformation. Cell culture experiments show that P(L)LA-co-TMC scaffold promotes cardiomyocyte proliferation and efficiently preserve cell morphology, without hampering expression of sarcomeric alpha actinin marker, thus demonstrating its potentialities as synthetic biomaterial for myocardial tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Elastomers/chemistry , Myocytes, Cardiac/physiology , Polyesters/chemistry , Tissue Engineering/methods , Animals , Cell Proliferation , Microscopy, Acoustic , Myocytes, Cardiac/cytology , Rabbits
17.
J Pharm Pharm Sci ; 13(3): 400-10, 2010.
Article in English | MEDLINE | ID: mdl-21092712

ABSTRACT

Topical administration of levothyroxine (T4) helps to reduces deposits of adipose tissue on skin. The question is whether topical application of T4 could lead to systemic effects. In the present study a series of nanofibrous membranes were electrospun into blends of poly vinyl alcohol (PVA) and poly-N-isopropylacrylamide (PNIPAM) to develop a sustained topical delivery of T4. The polymeric nanofiber mats were characterized by field emission scanning electron microscopy (FESEM) and fourier transform infrared (FTIR) spectroscopy. In vitro permeation of the drug from the polymeric nanofibers was studied using excised human skin and the permeation mechanism investigated using confocal microscopy. It was observed that polymeric nanofibers were able to sustain the penetration of T4 to the skin and help maintain the effective drug concentration in the skin layers for longer period of time. These formulations may have potential uses in topical skin products and can help to increase the accumulation of the active compound on the skin surface thus minimize the adverse side effects which may be caused by systemic absorption. This may result in great improvement in consumer compliance, avoid frequent dosing and enhance the therapeutic effectiveness.


Subject(s)
Acrylic Resins , Nanofibers , Polyvinyl Alcohol , Thyroxine/administration & dosage , Administration, Topical , Fluorescein , Hormone Replacement Therapy , Humans , Indoles , Microscopy, Electron, Scanning , Skin/metabolism , Spectroscopy, Fourier Transform Infrared , Thyroxine/pharmacokinetics
18.
Int J Pharm ; 587: 119673, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32739388

ABSTRACT

Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.


Subject(s)
Pharmaceutical Preparations , Polymers , Administration, Cutaneous , Drug Delivery Systems , Humans , Microinjections , Needles , Skin
19.
J Cell Mol Med ; 13(9B): 3475-84, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19228268

ABSTRACT

Inadequate cell numbers in culture is one of the hurdles currently delaying the application of human embryonic stem cells (hESCs) for transplantation therapy. Nanofibrous scaffolds have been effectively used to expand and differentiate non-colony forming multipotent mesenchymal stem cells (MSC) for the repair of tissues or organs. In the present study, we evaluated the influence of nanofibrous scaffolds for hESC proliferation, increase in colony formation, self-renewal properties, undifferentiation and retention of 'stemness'. Polycaprolactone/collagen (PCL/collagen) and PCL/gelatin nanofibrous scaffolds were fabricated using electrospinning technology. The hESCs were seeded on the nanofibrous scaffolds in the presence or absence of mitomycin-C treated mouse embryonic fibroblasts (MEFs). The hESCs grown on both scaffolds in the presence of the MEFs produced an increase in cell growth of 47.58% (P

Subject(s)
Cell Culture Techniques , Embryonic Stem Cells/cytology , Nanoparticles/chemistry , Animals , Cell Proliferation , Fibroblasts/metabolism , Humans , Mice , Microscopy, Electron, Scanning/methods , Microscopy, Phase-Contrast/methods , Mitomycin/pharmacology , Nanofibers , Nanotechnology/methods , Reverse Transcriptase Polymerase Chain Reaction
20.
Mater Sci Eng C Mater Biol Appl ; 96: 337-346, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606541

ABSTRACT

Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp). We attempted to investigate the interaction between the human foetal osteoblasts (hFOB) with ZnO doped HAp incorporated biocomposite poly(L-lactic acid)-co-poly(ε-caprolactone) and silk fibroin (PLACL/SF) nanofibrous scaffolds for osteoblasts mineralization in bone tissue regeneration. The present study, we doped ZnO with HAp (ZnO(HAp) using the sol-gel ethanol condensation technique. The properties of PLACL/SF/ZnO(HAp) biocomposite nanofibrous scaffolds enhanced with doped and blended ZnO/HAp were characterized using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile studies to determine the morphology, functionality, wettability and stability. The in vitro study results showed that the addition of ZnO and HAp enhances the secretion of bone mineral matrix (98%) with smaller fiber diameter (139.4 ±â€¯27 nm) due to the presence of silk fibroin showing potential tensile properties (322.4%), and increased the proliferation of osteoblasts for bone tissue regeneration.


Subject(s)
Calcification, Physiologic/drug effects , Durapatite , Nanofibers/chemistry , Osteoblasts/metabolism , Tissue Scaffolds/chemistry , Zinc Oxide , Cells, Cultured , Durapatite/chemistry , Durapatite/pharmacology , Extracellular Matrix/chemistry , Humans , Osteoblasts/cytology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL