Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cell Mol Life Sci ; 80(3): 72, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36840772

ABSTRACT

Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.


Subject(s)
Chikungunya virus , Poly(ADP-ribose) Polymerases , ADP-Ribosylation , Chikungunya virus/genetics , Chikungunya virus/metabolism , Peptide Hydrolases/genetics , Polyproteins/genetics , Polyproteins/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication/physiology , Poly(ADP-ribose) Polymerases/metabolism
2.
Cell Mol Life Sci ; 79(6): 288, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35536484

ABSTRACT

The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus-host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.


Subject(s)
ADP Ribose Transferases , Viruses , Interphase , Pathogen-Associated Molecular Pattern Molecules , Virus Replication
3.
J Exp Med ; 217(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32315377

ABSTRACT

Aberrant detection of endogenous nucleic acids by the immune system can cause inflammatory disease. The scaffold function of the signaling kinase RIPK1 limits spontaneous activation of the nucleic acid sensor ZBP1. Consequently, loss of RIPK1 in keratinocytes induces ZBP1-dependent necroptosis and skin inflammation. Whether nucleic acid sensing is required to activate ZBP1 in RIPK1-deficient conditions and which immune pathways are associated with skin disease remained open questions. Using knock-in mice with disrupted ZBP1 nucleic acid-binding activity, we report that sensing of endogenous nucleic acids by ZBP1 is critical in driving skin pathology characterized by antiviral and IL-17 immune responses. Inducing ZBP1 expression by interferons triggers necroptosis in RIPK1-deficient keratinocytes, and epidermis-specific deletion of MLKL prevents disease, demonstrating that cell-intrinsic events cause inflammation. These findings indicate that dysregulated sensing of endogenous nucleic acid by ZBP1 can drive inflammation and may contribute to the pathogenesis of IL-17-driven inflammatory skin conditions such as psoriasis.


Subject(s)
Inflammation/pathology , Keratinocytes/metabolism , Keratinocytes/pathology , Necroptosis , Nucleic Acids/metabolism , RNA-Binding Proteins/metabolism , Skin/pathology , Animals , HEK293 Cells , Humans , Inflammation/immunology , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL