Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Plant Physiol ; 186(2): 1171-1185, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33693949

ABSTRACT

The worldwide distribution of Arabidopsis (Arabidopsis thaliana) accessions imposes different types of evolutionary pressures, which contributes to various responses of these accessions to environmental stresses. Responses to drought stress have mostly been studied in the Columbia accession, which is predominantly used in plant research. However, the reactions to drought stress are complex and our understanding of the responses that contribute to maintaining plant growth during mild drought (MD) is very limited. Here, we studied the mechanisms with which natural accessions react to MD at a physiological and molecular level during early leaf development. We documented variations in MD responses among natural accessions and used transcriptome sequencing of a drought-sensitive accession, ICE163, and a drought-insensitive accession, Yeg-1, to gain insights into the mechanisms underlying this discrepancy. This revealed that ICE163 preferentially induces jasmonate- and anthocyanin-related pathways, which are beneficial in biotic stress defense, whereas Yeg-1 has a more pronounced activation of abscisic acid signaling, the classical abiotic stress response. Related physiological traits, including the content of proline, anthocyanins, and reactive oxygen species, stomatal closure, and cellular leaf parameters, were investigated and linked to the transcriptional responses. We can conclude that most of these processes constitute general drought response mechanisms that are regulated similarly in drought-insensitive and -sensitive accessions. However, the capacity to close stomata and maintain cell expansion under MD appeared to be major factors that allow to better sustain leaf growth under MD.


Subject(s)
Arabidopsis/physiology , Stress, Physiological , Anthocyanins/metabolism , Arabidopsis/genetics , Cyclopentanes/metabolism , Droughts , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Stomata/genetics , Plant Stomata/physiology
2.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Article in English | MEDLINE | ID: mdl-28420746

ABSTRACT

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Subject(s)
Arabidopsis/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Mitochondrial/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mitochondria/genetics , Mitochondrial Proteins/genetics
3.
Plant Mol Biol ; 99(1-2): 79-93, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30511331

ABSTRACT

KEY MESSAGE: Here, we used a hxk1 mutant in the Col-0 background. We demonstrated that HXK1 regulates cell proliferation and expansion early during leaf development, and that HXK1 is involved in sucrose-induced leaf growth stimulation independent of GPT2. Furthermore, we identified KINγ as a novel HXK1-interacting protein. In the last decade, extensive efforts have been made to unravel the underlying mechanisms of plant growth control through sugar availability. Signaling by the conserved glucose sensor HEXOKINASE1 (HXK1) has been shown to exert both growth-promoting and growth-inhibitory effects depending on the sugar levels, the environmental conditions and the plant species. Here, we used a hxk1 mutant in the Col-0 background to investigate the role of HXK1 during leaf growth in more detail and show that it is affected in both cell proliferation and cell expansion early during leaf development. Furthermore, the hxk1 mutant is less sensitive to sucrose-induced cell proliferation with no significant increase in final leaf growth after transfer to sucrose. Early during leaf development, transfer to sucrose stimulates expression of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) and represses chloroplast differentiation. However, in the hxk1 mutant GPT2 expression was still upregulated by transfer to sucrose although chloroplast differentiation was not affected, suggesting that GPT2 is not involved in HXK1-dependent regulation of leaf growth. Finally, using tandem affinity purification of protein complexes from cell cultures, we identified KINγ, a protein containing four cystathionine ß-synthase domains, as an interacting protein of HXK1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Hexokinase/metabolism , Monosaccharide Transport Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Hexokinase/genetics , Monosaccharide Transport Proteins/genetics , Mutation , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Protein Serine-Threonine Kinases/genetics , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Sucrose/metabolism
4.
Plant Physiol ; 178(1): 217-232, 2018 09.
Article in English | MEDLINE | ID: mdl-29991485

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), reduced expression of the transcriptional regulator PEAPOD2 (PPD2) results in propeller-like rosettes with enlarged and dome-shaped leaves. However, the molecular and cellular processes underlying this peculiar phenotype remain elusive. Here, we studied the interaction between PPD2 and NOVEL INTERACTOR OF JAZ (NINJA) and demonstrated that ninja loss-of-function plants produce rosettes with dome-shaped leaves similar to those of ppd mutants but without the increase in size. We showed that ninja mutants have a convex-shaped primary cell cycle arrest front, putatively leading to excessive cell division in the central leaf blade region. Furthermore, ppd and ninja mutants have a similar increase in the expression of CYCLIN D3;2 (CYCD3;2), and ectopic overexpression of CYCD3;2 phenocopies the ppd and ninja rosette and leaf shape phenotypes without affecting the size. Our results reveal a pivotal contribution of NINJA in leaf development, in addition to its well-studied function in jasmonate signaling, and imply a new function for D3-type cyclins in, at least partially, uncoupling the size and shape phenotypes of ppd leaves.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cyclin D3/genetics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Arabidopsis/anatomy & histology , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Cell Cycle Checkpoints/genetics , Cell Division/genetics , Cyclin D3/metabolism , Mutation , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plants, Genetically Modified , Repressor Proteins/metabolism , Transcription Factors/metabolism
5.
Plant Cell ; 28(10): 2417-2434, 2016 10.
Article in English | MEDLINE | ID: mdl-27729396

ABSTRACT

Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Droughts , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome-Wide Association Study , Plant Leaves/genetics
6.
Mol Syst Biol ; 13(12): 961, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269383

ABSTRACT

Plants have established different mechanisms to cope with environmental fluctuations and accordingly fine-tune their growth and development through the regulation of complex molecular networks. It is largely unknown how the network architectures change and what the key regulators in stress responses and plant growth are. Here, we investigated a complex, highly interconnected network of 20 Arabidopsis transcription factors (TFs) at the basis of leaf growth inhibition upon mild osmotic stress. We tracked the dynamic behavior of the stress-responsive TFs over time, showing the rapid induction following stress treatment, specifically in growing leaves. The connections between the TFs were uncovered using inducible overexpression lines and were validated with transient expression assays. This study resulted in the identification of a core network, composed of ERF6, ERF8, ERF9, ERF59, and ERF98, which is responsible for most transcriptional connections. The analyses highlight the biological function of this core network in environmental adaptation and its redundancy. Finally, a phenotypic analysis of loss-of-function and gain-of-function lines of the transcription factors established multiple connections between the stress-responsive network and leaf growth.


Subject(s)
Arabidopsis/genetics , Gene Regulatory Networks , Osmotic Pressure/physiology , Stress, Physiological/genetics , Transcription, Genetic , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Arabidopsis/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Genes, Plant , Gibberellins/biosynthesis , Gibberellins/metabolism , Mannitol/pharmacology , Phenotype , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Plants, Genetically Modified , Stochastic Processes , Stress, Physiological/drug effects , Transcription Factors/metabolism , Transcription, Genetic/drug effects
8.
Plant Physiol ; 171(1): 590-605, 2016 05.
Article in English | MEDLINE | ID: mdl-26932234

ABSTRACT

Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Chloroplasts/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Leaves/growth & development , Sucrose/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Plant/drug effects , Mesophyll Cells/drug effects , Monosaccharide Transport Proteins/genetics , Mutation , Plant Leaves/cytology , Plant Leaves/metabolism , Seedlings/drug effects , Seedlings/growth & development , Sucrose/pharmacology
9.
Plant Cell ; 26(1): 210-29, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24443518

ABSTRACT

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Repressor Proteins/physiology , Adenosine Triphosphatases/metabolism , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Cell Differentiation , Cell Proliferation , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/physiology , Cyclin B/genetics , Cyclin B/metabolism , Genome, Plant , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/growth & development , Promoter Regions, Genetic , Repressor Proteins/genetics , Repressor Proteins/metabolism
10.
Plant Mol Biol ; 85(3): 233-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549883

ABSTRACT

The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Chloroplasts/physiology , Plant Leaves/cytology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation, Plant , Herbicides/pharmacology , Iron , Photosystem II Protein Complex , Plant Leaves/drug effects , Pyridazines/pharmacology , Nicotiana/cytology , Transcription Factors/genetics , Transcriptome
11.
Sci Adv ; 10(11): eadj2570, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478622

ABSTRACT

Ubiquitination plays a crucial role throughout plant growth and development. The E3 ligase DA2 has been reported to activate the peptidase DA1 by ubiquitination, hereby limiting cell proliferation. However, the molecular mechanisms that regulate DA2 remain elusive. Here, we demonstrate that DA2 has a very high turnover and auto-ubiquitinates with K48-linkage polyubiquitin chains, which is counteracted by two deubiquitinating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13. Unexpectedly, we found that auto-ubiquitination of DA2 does not influence its stability but determines its E3 ligase activity. We also demonstrate that impairing the protease activity of DA1 abolishes the growth-reducing effect of DA2. Last, we show that synthetic, constitutively activated DA1-ubiquitin fusion proteins overrule this complex balance of ubiquitination and deubiquitination and strongly restrict growth and promote endoreduplication. Our findings highlight a nonproteolytic function of K48-linked polyubiquitination and reveal a mechanism by which DA2 auto-ubiquitination levels, in concert with UBP12 and UBP13, precisely monitor the activity of DA1 and fine-tune plant organ size.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Organ Size , Endoreduplication , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cell Proliferation , Endopeptidases/genetics
12.
Genome Biol ; 24(1): 6, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639800

ABSTRACT

BACKGROUND: Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS: We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION: Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.


Subject(s)
CRISPR-Cas Systems , Zea mays , Zea mays/genetics , Triticum/genetics , Gene Editing/methods , Mutagenesis
13.
ACS Synth Biol ; 11(6): 2214-2220, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35675166

ABSTRACT

The assembly of DNA parts is a critical aspect of contemporary biological research. Gibson assembly and Golden Gate cloning are two popular options. Here, we explore the use of single stranded DNA oligos with Gibson assembly to augment Golden Gate cloning workflows in a process called "oligo stitching". Our results show that oligo stitching can efficiently convert Golden Gate parts between different assembly standards and directly assemble incompatible Golden Gate parts without PCR amplification. Building on previous reports, we show that it can also be used to assemble de novo sequences. As a final application, we show that restriction enzyme recognition sites can be removed from plasmids and utilize the same concept to perform saturation mutagenesis. Given oligo stitching's versatility and high efficiency, we expect that it will be a useful addition to the molecular biologist's toolbox.


Subject(s)
DNA , Synthetic Biology , Cloning, Molecular , DNA/genetics , Genetic Vectors , Mutagenesis , Plasmids/genetics , Polymerase Chain Reaction , Synthetic Biology/methods
14.
Elife ; 92020 03 25.
Article in English | MEDLINE | ID: mdl-32209225

ABSTRACT

Protein ubiquitination is a very diverse post-translational modification leading to protein degradation or delocalization, or altering protein activity. In Arabidopsis thaliana, two E3 ligases, BIG BROTHER (BB) and DA2, activate the latent peptidases DA1, DAR1 and DAR2 by mono-ubiquitination at multiple sites. Subsequently, these activated peptidases destabilize various positive growth regulators. Here, we show that two ubiquitin-specific proteases, UBP12 and UBP13, deubiquitinate DA1, DAR1 and DAR2, hence reducing their peptidase activity. Overexpression of UBP12 or UBP13 strongly decreased leaf size and cell area, and resulted in lower ploidy levels. Mutants in which UBP12 and UBP13 were downregulated produced smaller leaves that contained fewer and smaller cells. Remarkably, neither UBP12 nor UBP13 were found to be cleavage substrates of the activated DA1. Our results therefore suggest that UBP12 and UBP13 work upstream of DA1, DAR1 and DAR2 to restrict their protease activity and hence fine-tune plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Endopeptidases/metabolism , Gene Expression Regulation, Plant/physiology , Ubiquitin-Specific Proteases/metabolism , Ubiquitin/metabolism , Arabidopsis/genetics , Peptide Hydrolases/metabolism , Plant Development/physiology , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism
15.
J Food Prot ; 71(8): 1590-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18724752

ABSTRACT

The reduction of murine norovirus 1 (MNV-1) on onions and spinach by washing was investigated as was the risk of contamination during the washing procedure. To decontaminate wash water, the industrial sanitizer peracetic acid (PAA) was added to the water, and the survival of MNV-1 was determined. In contrast to onions, spinach undergoes a heat treatment before freezing. Therefore, the resistance of MNV-1 to blanching of spinach was examined. MNV-1 genomic copies were detected with a real-time reverse transcription PCR assay in PAA-treated water and blanched spinach, and PFUs (representing infectious MNV-1 units) were determined with a plaque assay. A < or = 1-log reduction in MNV-1 PFUs was achieved by washing onion bulbs and spinach leaves. More than 3 log PFU of MNV-1 was transmitted to onion bulbs and spinach leaves when these vegetables were washed in water containing approximately 5 log PFU/ml. No decline of MNV-1 occurred in used industrial spinach wash water after 6 days at room temperature. A concentration of 20 ppm of PAA in demineralized water (pH 4.13) and in potable water (pH 7.70) resulted in reductions of 2.88 +/- 0.25 and 2.41 +/- 0.18 log PFU, respectively, after 5 min of exposure, but no decrease in number of genomic copies was observed. No reduction of MNV-1 PFUs was observed on frozen onions or spinach during storage for 6 months. Blanching spinach (80 degrees C for 1 min) resulted in at least 2.44-log reductions of infectious MNV-1, but many genomic copies were still present.


Subject(s)
Disinfection/methods , Food Handling/methods , Norovirus/growth & development , Onions/virology , Spinacia oleracea/virology , Virus Inactivation , Animals , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Frozen Foods , Humans , Mice , Peracetic Acid/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Viral Plaque Assay
16.
Elife ; 3: e02252, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24843021

ABSTRACT

Several genes positively influence final leaf size in Arabidopsis when mutated or overexpressed. The connections between these growth regulators are still poorly understood although such knowledge would further contribute to understand the processes driving leaf growth. In this study, we performed a combinatorial screen with 13 transgenic Arabidopsis lines with an increased leaf size. We found that from 61 analyzed combinations, 39% showed an additional increase in leaf size and most resulted from a positive epistasis on growth. Similar to what is found in other organisms in which such an epistasis assay was performed, only few genes were highly connected in synergistic combinations as we observed a positive epistasis in the majority of the combinations with samba, BRI1(OE) or SAUR19(OE). Furthermore, positive epistasis was found with combinations of genes with a similar mode of action, but also with genes which affect distinct processes, such as cell proliferation and cell expansion.DOI: http://dx.doi.org/10.7554/eLife.02252.001.


Subject(s)
Arabidopsis/genetics , Epistasis, Genetic , Arabidopsis/growth & development , Genes, Plant , Plant Leaves/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL