ABSTRACT
Mutant KRAS is a major driver of oncogenesis in a multitude of cancers but remains a challenging target for classical small molecule drugs, motivating the exploration of alternative approaches. Here, we show that aggregation-prone regions (APRs) in the primary sequence of the oncoprotein constitute intrinsic vulnerabilities that can be exploited to misfold KRAS into protein aggregates. Conveniently, this propensity that is present in wild-type KRAS is increased in the common oncogenic mutations at positions 12 and 13. We show that synthetic peptides (Pept-ins™) derived from two distinct KRAS APRs could induce the misfolding and subsequent loss of function of oncogenic KRAS, both of recombinantly produced protein in solution, during cell-free translation and in cancer cells. The Pept-ins exerted antiproliferative activity against a range of mutant KRAS cell lines and abrogated tumor growth in a syngeneic lung adenocarcinoma mouse model driven by mutant KRAS G12V. These findings provide proof-of-concept that the intrinsic misfolding propensity of the KRAS oncoprotein can be exploited to cause its functional inactivation.
Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Mice , Cell Line, Tumor , Lung Neoplasms/genetics , Mutation , Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Protein FoldingABSTRACT
Many chaperones favour binding to hydrophobic sequences that are flanked by basic residues while disfavouring acidic residues. However, the origin of this bias in protein quality control remains poorly understood. Here, we show that while acidic residues are the most efficient aggregation inhibitors, they are also less compatible with globular protein structure than basic amino acids. As a result, while acidic residues allow for chaperone-independent control of aggregation, their use is structurally limited. Conversely, we find that, while being more compatible with globular structure, basic residues are not sufficient to autonomously suppress protein aggregation. Using Hsp70, we show that chaperones with a bias towards basic residues are structurally adapted to prioritize aggregating sequences whose structural context forced the use of the less effective basic residues. The hypothesis that emerges from our analysis is that the bias of many chaperones for basic residues results from fundamental thermodynamic and kinetic constraints of globular structure. This also suggests the co-evolution of basic residues and chaperones allowed for an expansion of structural variety in the protein universe.