Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurosci ; 43(29): 5340-5349, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37399333

ABSTRACT

The amygdala plays a key role in the processing of itch and pain signals as well as emotion. A previous study revealed that the central nucleus of the amygdala (CeA)-parabrachial nucleus (PBN) pathway is involved in pain regulation. The same pathway might also control itch. To test this possibility, prodynorphin (Pdyn)-Cre mice were used to optogenetically manipulate Pdyn+ CeA-to-PBN projections. We found that optogenetic stimulation of Pdyn+ amygdala neurons or Pdyn+ CeA-to-PBN projections inhibited histamine-evoked and chloroquine-evoked scratching. The number of Fos-positive neurons in the PBN increased following intradermal injection of chloroquine. Optogenetic stimulation of Pdyn+ CeA-to-PBN projections suppressed the increase in Fos expression in the PBN. Optogenetic stimulation of Pdyn+ CeA-to-PBN projections increased thermal and mechanical thresholds without affecting anxiety-like behavior. These results highlight the importance of dynorphinergic projections from the central amygdala to the parabrachial nucleus in the regulation of itch signaling.SIGNIFICANCE STATEMENT The central nucleus of the amygdala (CeA)-parabrachial nucleus (PBN) pathway regulates pain signaling. Using prodynorphin (Pdyn)-cre mice, we investigated the role of Pdyn+ CeA-to-PBN projections in itch. Optogenetic stimulation of Pdyn+ CeA-to-PBN projections inhibited pruritogen-evoked scratching and neuronal activity (c-Fos expression) in the PBN. Together, dynorphinergic projections from the central amygdala to the parabrachial nucleus are important for regulating itch information.


Subject(s)
Central Amygdaloid Nucleus , Parabrachial Nucleus , Mice , Animals , Pain , Neurons/physiology , Pruritus/chemically induced , Chloroquine
2.
Acta Derm Venereol ; 103: adv13382, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37605895

ABSTRACT

Crisaborole, a phosphodiesterase 4 (PDE4) inhibitor, has been approved for the treatment of mild to moderate atopic dermatitis. Atopic dermatitis is often associated with increased pain. Using a mouse model, this study investigated whether crisaborole suppresses pain associated with atopic dermatitis and the potential mechanisms underlying it. The mouse model for atopic dermatitis was developed by repeatedly applying MC903. MC903-treated mice had increased spontaneous scratching (itch-related behaviour) and wiping behaviour (pain-related behaviour). Crisaborole was topically applied to the cheek skin of MC903-treated mice, and it reduced both itch- and pain-related behaviours in these mice. Immunofluorescence staining revealed that crisaborole reduced neutrophil infiltration and interaction of neutrophils with sensory neurones. Intradermal injection of S100A8/A9, proinflammatory neutrophil mediator, enhanced not only itch-related behaviours evoked by histamine or chloroquine, but also pain-related behaviours evoked by capsaicin. Calcium imaging of mouse dorsal root ganglion neurones revealed that pretreatment with S100A8/A9 significantly increased calcium responses to histamine and capsaicin, and the proportion of chloroquine-sensitive neurones. These findings suggest that the PDE4 inhibitor reduces itch and pain, in part by inhibiting infiltration of S100A8/A9-containing neutrophils in a mouse model of MC903-induced atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Capsaicin , Calcium , Histamine , Neutrophil Infiltration , Pruritus/chemically induced , Pruritus/drug therapy , Pruritus/prevention & control , Pain/drug therapy , Pain/prevention & control , Disease Models, Animal , Chloroquine
3.
Res Sq ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826337

ABSTRACT

The central amygdala (CeA) is a crucial hub in the processing of affective itch, containing a diverse array of neuronal populations. Among these components, Neuropeptide Y (NPY) and its receptors, such as NPY2R, affect various physiological and psychological processes. Despite this broad impact, the precise role of NPY2R+ CeA neurons in itch modulation remains unknown, particularly concerning any potential lateralization effects. To address this, we employed optogenetics to selectively stimulate NPY2R+ CeA neurons in mice, investigating their impact on itch modulation. Optogenetic activation of NPY2R+ CeA neurons reduced scratching behavior elicited by pruritogens without exhibiting any lateralization effects. Electrophysiological recordings confirmed increased neuronal activity upon stimulation. However, this modulation did not affect thermal sensitivity, mechanical sensitivity, or inflammatory pain. Additionally, no alterations in anxiety-like behaviors or locomotion were observed upon stimulation. Projection tracing revealed connections of NPY2R+ CeA neurons to brain regions implicated in itch processing. Overall, this comprehensive study highlights the role of NPY2R+ CeA neurons in itch regulation without any lateralization effects.

4.
Res Sq ; 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824891

ABSTRACT

Venous leg ulcers (VLU) are the most common chronic wounds characterized by bacterial biofilms and perturbed microbiome. Staphylococcus epidermidis is primarily known as skin commensal beneficial for the host, however, some strains can form biofilms and cause infections. By employing shotgun metagenomic sequencing we show that genetic signatures of antimicrobial resistance, adhesion and biofilm formation in VLU isolates correlate with in vitro bacterial traits. We demonstrate that the capability of chronic wound isolates to form biofilms and elicit IL-8 and IL-1ß expression in human ex vivo wounds, correlates with the non-healing outcomes in patients with VLU. In contrast, commensal strains were incapable of surviving in the human ex vivo wounds. We show that major fitness traits of S. epidermis from VLU involve genes for resistance to methicillin and mupirocin, while the biofilm formation relied on the minimal number of genetic elements responsible for bacterial binding to fibronectin and fibrinogen. This underscores the importance of the emergence of treatment resistant virulent lineages in patients with non-healing wounds.

5.
Curr Dermatol Rep ; 11(2): 60-72, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37007641

ABSTRACT

Purpose of Review: To provide an up-to-date overview of recent developments in diagnostic methods and therapeutic approaches for chronic wound biofilms and pathogenic microbiota. Recent Findings: Biofilm infections are one of the major contributors to impaired wound healing in chronic wounds, including diabetic foot ulcers, venous leg ulcers, pressure ulcers, and nonhealing surgical wounds. As an organized microenvironment commonly including multiple microbial species, biofilms develop and persist through methods that allow evasion from host immune response and antimicrobial treatments. Suppression and reduction of biofilm infection have been demonstrated to improve wound healing outcomes. However, chronic wound biofilms are a challenge to treat due to limited methods for accurate, accessible clinical identification and the biofilm's protective properties against therapeutic agents. Here we review recent approaches towards visual markers for less invasive, enhanced biofilm detection in the clinical setting. We outline progress in wound care treatments including investigation of their antibiofilm effects, such as with hydrosurgical and ultrasound debridement, negative pressure wound therapy with instillation, antimicrobial peptides, nanoparticles and nanocarriers, electroceutical dressings, and phage therapy. Summary: Current evidence for biofilm-targeted treatments has been primarily conducted in preclinical studies, with limited clinical investigation for many therapies. Improved identification, monitoring, and treatment of biofilms require expansion of point-of-care visualization methods and increased evaluation of antibiofilm therapies in robust clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL