Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Stroke ; 55(2): 506-518, 2024 02.
Article in English | MEDLINE | ID: mdl-38252757

ABSTRACT

Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.


Subject(s)
Brain Injuries , Ischemic Stroke , Child , Adult , Infant, Newborn , Pregnancy , Humans , Female , Male , Arteries , Central Nervous System , Inflammation Mediators
2.
J Neuroinflammation ; 19(1): 47, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35148760

ABSTRACT

BACKGROUND: Ischemic stroke induces the activation and recruitment of peripheral leukocytes to the injured brain. These cells can infiltrate the brain through multiple routes, either by penetrating blood-brain barrier or via blood-CSF barriers at the meninges or the choroid plexus (CP). We previously showed that myeloid cell trafficking via the CP occurs early after neonatal arterial stroke and modulates injury. CD36 is a receptor that mediates function of endothelial cells and cells of the monocyte lineage under various neurodegenerative conditions and can influence brain injury after neonatal stroke. Here we asked whether CD36 impacts injury by altering leukocyte trafficking through the CP in neonatal mice subjected to transient middle cerebral artery occlusion (tMCAO). METHODS: In neonatal mice with intact or globally disrupted CD36 signalling (CD36 KO), we characterized the phenotypes of myeloid cells by flow cytometry and the underlying gene expression signatures in the CPs contralateral and ipsilateral to tMCAO by RNA sequencing analyses, focussing on early post-reperfusion time window. RESULTS: Flow cytometry in the isolated CPs revealed that CD36 mediates stepwise recruitment of myeloid cells to the CP ipsilateral to tMCAO early after reperfusion, with a predominant increase first in inflammatory monocyte subsets and neutrophils followed by patrolling monocytes. RNA sequencing analyses demonstrated marked changes in gene expression in the CP ipsilateral compared to the CP contralateral to tMCAO in wild type mice. Changes were further modified by lack of CD36, including distinction in several clusters of genes involved in inflammatory, metabolic and extracellular matrix signalling in the CP ipsilateral to tMCAO. CONCLUSION: Altogether, our data suggest cooperation between blood-CSF-brain interface via the CP through CD36-mediated signalling following neonatal stroke with a key role for inflammatory monocytes and neutrophils.


Subject(s)
Endothelial Cells , Stroke , Animals , Animals, Newborn , CD36 Antigens/genetics , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Stroke/metabolism
3.
J Neurosci ; 40(19): 3849-3861, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32269105

ABSTRACT

Neonatal stroke is as frequent as stroke in the elderly, but many pathophysiological injury aspects are distinct in neonates, including immune signaling. While myeloid cells can traffic into the brain via multiple routes, the choroid plexus (CP) has been identified as a uniquely educated gate for immune cell traffic during health and disease. To understand the mechanisms of myeloid cell trafficking via the CP and their influence on neonatal stroke, we characterized the phenotypes of CP-infiltrating myeloid cells after transient middle cerebral artery occlusion (tMCAO) in neonatal mice of both sexes in relation to blood-brain barrier permeability, injury, microglial activation, and CX3CR1-CCR2 signaling, focusing on the dynamics early after reperfusion. We demonstrate rapid recruitment of multiple myeloid phenotypes in the CP ipsilateral to the injury, including inflammatory CD45+CD11b+Ly6chighCD86+, beneficial CD45+CD11b+Ly6clowCD206+, and CD45+CD11b+Ly6clowLy6ghigh cells, but only minor leukocyte infiltration into acutely ischemic-reperfused cortex and negligible vascular albumin leakage. We report that CX3CR1-CCR2-mediated myeloid cell recruitment contributes to stroke injury. Considering the complexity of inflammatory cascades triggered by stroke and a role for TLR2 in injury, we also used direct TLR2 stimulation as an independent injury model. TLR2 agonist rapidly recruited myeloid cells to the CP, increased leukocytosis in the CSF and blood, but infiltration into the cortex remained low over time. While the magnitude and the phenotypes of myeloid cells diverged between tMCAO and TLR2 stimulation, in both models, disruption of CX3CR1-CCR2 signaling attenuated both monocyte and neutrophil trafficking to the CP and cortex.SIGNIFICANCE STATEMENT Stroke during the neonatal period leads to long-term disabilities. The mechanisms of ischemic injury and inflammatory response differ greatly between the immature and adult brain. We examined leukocyte trafficking via the choroid plexus (CP) following neonatal stroke in relation to blood-brain barrier integrity, injury, microglial activation, and signaling via CX3CR1 and CCR2 receptors, or following direct TLR2 stimulation. Ischemia-reperfusion triggered marked unilateral CX3CR1-CCR2 dependent accumulation of diverse leukocyte subpopulations in the CP without inducing extravascular albumin leakage or major leukocyte infiltration into the brain. Disrupted CX3CR1-CCR2 signaling was neuroprotective in part by attenuating monocyte and neutrophil trafficking. Understanding the migratory patterns of CP-infiltrating myeloid cells with intact and disrupted CX3CR1-CCR2 signaling could identify novel therapeutic targets to protect the neonatal brain.


Subject(s)
Chemotaxis, Leukocyte/physiology , Choroid Plexus/metabolism , Myeloid Cells/metabolism , Stroke/physiopathology , Animals , Animals, Newborn , CX3C Chemokine Receptor 1/metabolism , Choroid Plexus/immunology , Female , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Receptors, CCR2/metabolism , Stroke/immunology , Stroke/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism
4.
Neurobiol Dis ; 157: 105431, 2021 09.
Article in English | MEDLINE | ID: mdl-34153465

ABSTRACT

Microglial cells support brain homeostasis under physiological conditions and modulate brain injury in a context-dependent and brain maturation-dependent manner. Microglial cells protect neonatal brain from acute stroke. While microglial signaling via direct cell-cell interaction and release of variety of molecules is intensely studied, less is known about microglial signaling via release and uptake of extracellular vesicles (EVs). We asked whether neonatal stroke alters release of microglial EVs (MEV) and MEV communication with activated microglia. We pulled down and plated microglia from ischemic-reperfused and contralateral cortex 24 h after transient middle cerebral artery occlusion (tMCAO) in postnatal day 9 mice, isolated and characterized microglia-derived microvesicles (P3-MEV) and exosomes (P4-MEV), and determined uptake of fluorescently labeled P3-MEV and P4-MEV by plated microglia derived from ischemic-reperfused and contralateral cortex. We then examined how reducing EVs release in neonatal brain-by intra-cortical injection of CRISPR-Cas9-Smpd3/KO (Smpd3/KD) to downregulate Smpd3 gene to disrupt neutral sphingomyelinase-2 (N-SMase2)-impacts P3-MEV and P4-MEV release and stroke injury. Both size and protein composition differed between P3-MEV and P4-MEV. tMCAO further altered protein composition of P3-MEV and P4-MEV and significantly, up to 5-fold, increased uptake of both vesicle subtypes by microglia from ischemic-reperfused regions. Under physiological conditions neurons were the predominant cell type expressing N-SMase-2, an enzyme involved in lipid signaling and EVs release. After tMCAO N-SMase-2 expression was diminished in injured neurons but increased in activated microglia/macrophages, leading to overall reduced N-SMase-2 activity. Compared to intracerebral injection of control plasmid, CRISPR-Cas9-Smpd3/Ct, Smpd3/KD injection further reduced N-SMase-2 activity and significantly reduced injury. Smpd3 downregulation decreased MEV release from injured regions, reduced Smpd3/KD-P3-MEV uptake and abolished Smpd3/KD-P4-MEV uptake by microglia from ischemic-reperfused region. Cumulatively, these data demonstrate that microglial cells release both microvesicles and exosomes in naïve neonatal brain, that the state of microglial activation determines both properties of released EVs and their recognition/uptake by microglia in ischemic-reperfused and control regions, suggesting a modulatory role of MEV in neonatal stroke, and that sphingosine/N-SMase-2 signaling contributes both to EVs release and uptake (predominantly P4-MEV) after neonatal stroke.


Subject(s)
Brain/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Infarction, Middle Cerebral Artery/metabolism , Microglia/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Animals, Newborn , Disease Models, Animal , Gene Knockdown Techniques , Macrophage Activation , Mice , Signal Transduction , Sphingomyelin Phosphodiesterase/genetics , Stroke/metabolism
5.
J Physiol ; 596(23): 5655-5664, 2018 12.
Article in English | MEDLINE | ID: mdl-29528501

ABSTRACT

Central nervous system homeostasis is maintained by cellular barriers that protect the brain from external environmental changes and protect the CNS from harmful molecules and pathogens in the blood. Historically, for many years these barriers were thought of as immature, with limited functions, during brain development. In this review, we will present advances in the understanding of the barrier systems during development and evidence to show that in fact the barriers serve many important neurodevelopmental functions and that fetal and newborn brains are well protected. We will also discuss how ischaemic injury or systemic inflammation may breach the integrity of the barriers in the developing brain.


Subject(s)
Brain/physiology , Fetal Development , Animals , Biological Transport , Brain Injuries , Fetal Hypoxia , Fetus , Humans , Inflammation
6.
J Neurosci ; 36(10): 2881-93, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26961944

ABSTRACT

Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFß1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFß1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Infarction, Middle Cerebral Artery/complications , Intracranial Hemorrhages/etiology , Intracranial Hemorrhages/prevention & control , Microglia/physiology , Age Factors , Animals , Animals, Newborn , Benzamides/pharmacology , Bone Density Conservation Agents/pharmacology , Caspase 3/metabolism , Clodronic Acid/toxicity , Dioxoles/pharmacology , Disease Models, Animal , Endothelial Cells/pathology , Female , Gene Expression Regulation, Developmental/drug effects , Male , Mice , Mice, Transgenic , Microglia/drug effects , Rats , Signal Transduction/drug effects , Signal Transduction/physiology , Smad2 Protein/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/metabolism
7.
J Neurosci Res ; 95(5): 1225-1236, 2017 05.
Article in English | MEDLINE | ID: mdl-27781299

ABSTRACT

Cell therapy has emerged as a potential treatment for many neurodegenerative diseases including stroke and neonatal ischemic brain injury. Delayed intranasal administration of mesenchymal stem cells (MSCs) after experimental hypoxia-ischemia and after a transient middle cerebral artery occlusion (tMCAO) in neonatal rats has shown improvement in long-term functional outcomes, but the effects of MSCs on white matter injury (WMI) are insufficiently understood. In this study we used longitudinal T2-weighted (T2W) and diffusion tensor magnetic resonance imaging (MRI) to characterize chronic injury after tMCAO induced in postnatal day 10 (P10) rats and examined the effects of delayed MSC administration on WMI, axonal coverage, and long-term somatosensory function. We show unilateral injury- and region-dependent changes in diffusion fraction anisotropy 1 and 2 weeks after tMCAO that correspond to accumulation of degraded myelin basic protein, astrocytosis, and decreased axonal coverage. With the use of stringent T2W-based injury criteria at 72 hr after tMCAO to randomize neonatal rats to receive intranasal MSCs or vehicle, we show that a single MSC administration attenuates WMI and enhances somatosensory function 28 days after stroke. A positive correlation was found between MSC-enhanced white matter integrity and functional performance in injured neonatal rats. Collectively, these data indicate that the damage induced by tMCAO progresses over time and is halted by administration of MSCs. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Mesenchymal Stem Cells/physiology , White Matter/pathology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Disease Models, Animal , Gene Expression Regulation, Developmental/physiology , Glial Fibrillary Acidic Protein/metabolism , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/therapy , Lectins/metabolism , Myelin Basic Protein/metabolism , Psychomotor Disorders/etiology , Rats , Rats, Sprague-Dawley , White Matter/metabolism
8.
Brain Behav Immun ; 60: 270-281, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27836669

ABSTRACT

The pathophysiology of neonatal stroke and adult stroke are distinct in many aspects, including the inflammatory response. We previously showed endogenously protective functions of microglial cells in acute neonatal stroke. We asked if galectin-3 (Gal3), a pleotropic molecule that mediates interactions between microglia/macrophages and the extracellular matrix (ECM), plays a role in early injury after transient middle cerebral occlusion (tMCAO) in postnatal day 9-10 mice. Compared to wild type (WT) pups, in Gal3 knockout pups injury was worse and cytokine/chemokine production altered, including further increase of MIP1α and MIP1ß levels and reduced IL6 levels 72h after tMCAO. Lack of Gal3 did not affect morphological transformation or proliferation of microglia but markedly attenuated accumulation of CD11b+/CD45med-high cells after injury, as determined by multi-color flow cytometry. tMCAO increased expression of αV and ß3 integrin subunits in CD11b+/CD45low microglial cells and cells of non-monocyte lineage (CD11b-/CD45-), but not in CD11b+/CD45med-high cells within injured regions of WT mice or Gal3-/- mice. αV upregulated in areas occupied and not occupied by CD68+ cells, most prominently in the ECM, lining blood vessels, with expanded αV coverage in Gal3-/- mice. Cumulatively, these data show that lack of Gal3 worsens subchronic injury after neonatal focal stroke, likely by altering the neuroinflammatory milieu, including an imbalance between pro- and anti-inflammatory molecules, effects on microglial activation, and deregulation of the composition of the ECM.


Subject(s)
Brain/metabolism , Galectin 3/genetics , Gene Deletion , Macrophages/metabolism , Stroke/metabolism , Animals , Animals, Newborn , Chemokines/metabolism , Cytokines/metabolism , Female , Macrophage Activation/genetics , Male , Mice , Microglia/metabolism , Rats , Stroke/genetics
9.
Brain Behav Immun ; 65: 312-327, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28579520

ABSTRACT

Activation of microglial cells in response to brain injury and/or immune stimuli is associated with a marked induction of Toll-like receptors (TLRs). While in adult brain, the contribution of individual TLRs, including TLR2, in pathophysiological cascades has been well established, their role and spatial and temporal induction patterns in immature brain are far less understood. To examine whether infectious stimuli and sterile inflammatory stimuli trigger distinct TLR2-mediated innate immune responses, we used three models in postnatal day 9 (P9) mice, a model of infection induced by systemic endotoxin injection and two models of sterile inflammation, intra-cortical IL-1ß injection and transient middle cerebral artery occlusion (tMCAO). We took advantage of a transgenic mouse model bearing the dual reporter system luciferase/GFP under transcriptional control of a murine TLR2 promoter (TLR2-luc-GFP) to visualize the TLR2 response in the living neonatal brain and then determined neuroinflammation, microglial activation and leukocyte infiltration. We show that in physiological postnatal brain development the in vivo TLR2-luc signal undergoes a marked ∼30-fold decline and temporal-spatial changes during the second and third postnatal weeks. We then show that while endotoxin robustly induces the in vivo TLR2-luc signal in the living brain and increases levels of several inflammatory cytokines and chemokines, the in vivo TLR2-luc signal is reduced after both IL-1ß and tMCAO and the inflammatory response is muted. Immunofluorescence revealed that microglial cells are the predominant source of TLR2 production during postnatal brain development and in all three neonatal models studied. Flow cytometry revealed developmental changes in CD11b+/CD45+ and CD11b+/Ly6C+ cell populations, involvement of cells of the monocyte lineage, but lack of Ly6G+ neutrophils or CD3+ cells in acutely injured neonatal brains. Cumulatively, our results suggest distinct TLR2 induction patterns following PAMP and DAMP - mediated inflammation in immature brain.


Subject(s)
Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/physiology , Toll-Like Receptors/metabolism , Animals , Animals, Newborn , Brain/metabolism , Chemokines/immunology , Cytokines/immunology , Disease Models, Animal , Immunity, Innate/immunology , Infarction, Middle Cerebral Artery , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta , Macrophage Activation/immunology , Mice , Mice, Transgenic , Microglia/metabolism , Monocytes/metabolism , Toll-Like Receptors/genetics
10.
Pediatr Res ; 82(3): 518-526, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28561815

ABSTRACT

BackgroundTherapeutic hypothermia (TH) is the standard of care for neonates with hypoxic-ischemic encephalopathy, but it is not fully protective in the clinical setting. Hypoxia-ischemia (HI) may cause white matter injury (WMI), leading to neurological and cognitive dysfunction.MethodsP9 mice were subjected to HI as previously described. Pups underwent 3.5 h of systemic hypothermia or normothermia. Cresyl violet and Perl's iron staining for histopathological scoring of brain sections was completed blindly on all brains. Immunocytochemical (ICC) staining for myelin basic protein (MBP), microglia (Iba1), and astrocytes (glia fibrillary acidic protein (GFAP)) was performed on adjacent sections. Volumetric measurements of MBP coverage were used for quantitative analysis of white matter.ResultsTH provided neuroprotection by injury scoring for the entire group (n=44; P<0.0002). ICC analysis of a subset of brains showed that the lateral caudate was protected from WMI (P<0.05). Analysis revealed decreased GFAP and Iba1 staining in hippocampal regions, mostly CA2/CA3. GFAP and Iba1 directly correlated with injury scores of normothermic brains.ConclusionTH reduced injury, and qualitative data suggest that hippocampus and lateral caudate are protected from HI. Mildly injured brains may better show the benefits of TH. Overall, these data indicate regional differences in WMI susceptibility and inflammation in a P9 murine HI model.


Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain/therapy , White Matter/pathology , Animals , Animals, Newborn , Female , Glial Fibrillary Acidic Protein/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Male , Mice , White Matter/metabolism
11.
J Neurochem ; 135(3): 445-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26223273

ABSTRACT

The stage of brain development at the time of stroke has a major impact on the pathophysiological mechanisms of ischemic damage, including the neuroinflammatory response. Microglial cells have been shown to contribute to acute and subchronic injury in adult stroke models, whereas in neonatal rodents we showed that microglial cells serve as endogenous neuroprotectants early following transient middle cerebral artery occlusion, limiting neuroinflammation and injury. In the neonate, microglial depletion or lack of the scavenger receptor CD36 exacerbates injury. In this study we asked if lack of CD36 affects microglial phenotypes after neonatal stroke. Using RT-PCR we characterized the patterns of gene expression in microglia isolated from injured regions following acute transient middle cerebral artery occlusion in postnatal day 10 mice and showed that expression of several pro-inflammatory genes, including Toll-like receptors, remains largely unaffected in activated microglia in injured regions. Using multiple biochemical assays we demonstrated that lack of CD36 alters several functions of microglia in acutely injured neonatal brain: it further enhances accumulation of the chemokine MCP-1, affects the number of CD11b(+) /CD45(+) cells, along with protein expression of its co-receptor, Toll-like receptor 2, but does not affect accumulation of superoxide in microglia or the cytokines TNFα and IL-1ß in injured regions.


Subject(s)
CD36 Antigens/deficiency , Microglia/metabolism , Phenotype , Stroke/metabolism , Animals , Animals, Newborn , CD36 Antigens/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology , Stroke/genetics , Stroke/pathology
12.
Transl Stroke Res ; 15(1): 69-86, 2024 02.
Article in English | MEDLINE | ID: mdl-36705821

ABSTRACT

Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.


Subject(s)
Brain Injuries , Brain Ischemia , Stroke , Infant, Newborn , Humans , Child , Stroke/therapy , Brain/metabolism , Neuroprotection
13.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328227

ABSTRACT

Infection during perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (PUFA) transforms brain lipid composition and protects from neonatal stroke. Vasculature is a critical interface between blood and brain providing a barrier to systemic infection. Here we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in 9-day old mice after endotoxin (LPS)-induced infection. Transcriptome analysis was performed on brain microvessels from pups born to dams maintained on 3 diets: standard, n-3 or n-6 enriched. N-3 diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. LPS response in blood and brain was blunted in n-3 offspring. Cerebral angioarchitecture analysis revealed modified vessel complexity after LPS. Thus, n-3-enriched maternal diet partially prevents imbalance in homeostatic processes and alters inflammation rather than affects brain vascularization during early life. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.

14.
J Neurosci ; 32(28): 9588-600, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22787045

ABSTRACT

The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked whether the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2-24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70 kDa dextran) and small (3 kDa dextran), gadolinium (III)-diethyltriaminepentaacetic acid tracers remained largely undisturbed 24 h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24 h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and matrix metalloproteinase-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin, and zonula occludens protein 1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of cytokine-induced neutrophil chemoattractant-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability, and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke.


Subject(s)
Blood-Brain Barrier/physiopathology , Capillary Permeability/physiology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Age Factors , Animals , Animals, Newborn , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/growth & development , Brain/growth & development , Brain/metabolism , Brain/pathology , Collagen/metabolism , Dextrans/pharmacokinetics , Disease Models, Animal , Endothelial Cells/metabolism , Evans Blue , Female , Fluorescent Dyes , Functional Laterality , Gadolinium DTPA , Gene Expression Regulation/physiology , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/diagnostic imaging , Lectins/metabolism , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Male , Membrane Proteins/metabolism , Radiography , Rats , Rats, Sprague-Dawley , Receptor Protein-Tyrosine Kinases/metabolism , Reperfusion , Serum Albumin, Bovine , Statistics, Nonparametric , Time Factors
15.
Stroke ; 44(5): 1426-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23539530

ABSTRACT

BACKGROUND AND PURPOSE: Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. METHODS: We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. RESULTS: Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF-treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. CONCLUSIONS: Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.


Subject(s)
Brain-Derived Neurotrophic Factor/therapeutic use , Brain/pathology , Infarction, Middle Cerebral Artery/therapy , Mesenchymal Stem Cell Transplantation/methods , Stroke/therapy , Animals , Cell Proliferation , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Nerve Fibers, Myelinated/pathology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Stroke/pathology
16.
Ann Neurol ; 72(6): 961-70, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23280844

ABSTRACT

OBJECTIVE: The scavenger receptor CD36 is injurious in acute experimental focal stroke and neurodegenerative diseases in the adult. We investigated the effects of genetic deletion of CD36 (CD36ko) on acute injury, and oxidative and inflammatory signaling after neonatal stroke. METHODS: Postnatal day 9 CD36ko and wild-type (WT) mice were subjected to a transient middle cerebral artery occlusion (MCAO). Injury, phagocytosis of dying cells, and CD36 inflammatory signaling were determined. RESULTS: While the volume of tissue at risk by diffusion-weighted magnetic resonance imaging during MCAO was similar in neonatal CD36ko and WT mice, by 24 hours after reperfusion, injury was more severe in CD36ko and was associated with increased caspase-3 cleavage and reduced engulfment of neurons expressing cleaved caspase-3 by activated microglia. No significant superoxide generation was observed in activated microglia in injured WT, whereas increased superoxide production in vessels and nuclear factor (NF)-κB activation induced by MCAO were unaffected by lack of CD36. Lyn expression was higher in injured CD36ko, and cell type-specific patterns of Lyn expression were altered; Lyn was expressed in endothelial cells and microglia in WT but predominantly in dying neurons in CD36ko. INTERPRETATION: Lack of CD36 results in poorer short-term outcome from neonatal focal stroke due to lack of attenuation of NF-κB-mediated inflammation and diminished removal of apoptotic neuronal debris. Although inhibition of CD36 does not seem to be a good therapeutic target for protection after acute neonatal stroke, as it is after adult stroke, seeking better understanding of CD36 signaling in particular cell populations may reveal important therapeutic targets for neonatal stroke.


Subject(s)
Brain/metabolism , CD36 Antigens/deficiency , Gene Expression Regulation, Developmental/genetics , Infarction, Middle Cerebral Artery , Animals , Animals, Newborn , Apoptosis/genetics , Brain/pathology , Caspase 3 , Chemokines/metabolism , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Electrophoretic Mobility Shift Assay , Functional Laterality , Indoles , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , NF-kappa B/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Receptors, CCR1/metabolism , Superoxides/metabolism , src-Family Kinases/metabolism
17.
iScience ; 26(4): 106340, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37009213

ABSTRACT

Arterial ischemic stroke is common in neonates-1 per 2,300-5,000 births-and therapeutic targets remain insufficiently defined. Sphingosine-1-phosphate receptor 2 (S1PR2), a major regulator of the CNS and immune systems, is injurious in adult stroke. Here, we assessed whether S1PR2 contributes to stroke induced by 3 h transient middle cerebral artery occlusion (tMCAO) in S1PR2 heterozygous (HET), knockout (KO), and wild type (WT) postnatal day 9 pups. HET and WT of both sexes displayed functional deficits in Open Field test whereas injured KO at 24 h reperfusion performed similarly to naives. S1PR2 deficiency protected neurons, attenuated infiltration of inflammatory monocytes, and altered vessel-microglia interactions without reducing increased cytokine levels in injured regions at 72 h. Pharmacologic inhibition of S1PR2 after tMCAO by JTE-013 attenuated injury 72 h after tMCAO. Importantly, the lack of S1PR2 alleviated anxiety and brain atrophy during chronic injury. Altogether, we identify S1PR2 as a potential new target for mitigating neonatal stroke.

18.
Sci Rep ; 13(1): 2304, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759676

ABSTRACT

Innate immune response in neonatal brain is associated with a robust microglial activation and induction of Toll-like Receptors (TLRs). To date, the role of the scavenger receptor CD36 in TLRs modulation, particularly TLR2 signaling, has been well established in adult brain. However, the crosstalk between TLR4, TLR2 and CD36 and its immunogenic influence in the neonatal brain remains unclear. In this study, using a CD36 blocking antibody (anti-CD36) at post-natal day 8, we evaluated the response of neonates to systemic endotoxin (lipopolysaccharide; LPS) challenge. We visualized the TLR2 response by bioluminescence imaging using the transgenic mouse model bearing the dual reporter system luciferase/green fluorescent protein under transcriptional control of a murine TLR2 promoter. The anti-CD36 treatment modified the LPS induced inflammatory profile in neonatal brains, causing a significant decrease in inflammatory cytokine levels and the TLR2 and TLR3 mediated signalling.The interferon regulatory factor 3 (IRF3) pathway remained unaffected. Treatment of the LPS-challenged human immature microglia with anti-CD36 induced a marked decrease in TLR2/TLR3 expression levels while TLR4 and IRF3 expression was not affected, suggesting the shared CD36 regulatory mechanisms in human and mouse microglia. Collectively, our results indicate that blocking CD36 alters LPS-induced inflammatory profile of mouse and human microglia, suggesting its role in fine-tuning of neuroinflammation.


Subject(s)
Microglia , Toll-Like Receptor 2 , Animals , Humans , Infant, Newborn , Mice , Animals, Newborn , Brain/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Lipopolysaccharides , Mice, Transgenic , Microglia/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism
19.
J Neurosci ; 31(36): 12992-3001, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21900578

ABSTRACT

Macrophages are viewed as amplifiers of ischemic brain injury, but the origin of injury-producing macrophages is poorly defined. The role of resident brain macrophages-microglial cells-in stroke remains controversial. To determine whether microglial cells exert injurious effects after neonatal focal stroke, we selectively depleted these cells with intracerebral injection of liposome-encapsulated clodronate before transient middle cerebral artery occlusion in postnatal day 7 rats. Phagocytosis of apoptotic neurons by activated microglia was poor in animals with unmanipulated microglia, and depletion of these cells did not increase the number of apoptotic neurons. Lack of microglia increased the brain levels of several cytokines and chemokines already elevated by ischemia-reperfusion, and also increased the severity and volume of injury, suggesting that microglial cells contribute to endogenous protection during the subacute injury phase. Then, to determine whether accumulation of reactive oxygen species in microglia adversely affects phagocytosis of dying neurons and contributes to injury, we delivered reduced glutathione (GSH) into microglia, again using liposomes. Remarkably, pharmacologically increased intracellular GSH concentrations in microglia induced superoxide accumulation in lipid rafts in these cells, further increased the brain levels of macrophage chemoattractants, and exacerbated injury. Together, these data show that microglia are part of the endogenous defense mechanisms and that, while antioxidants can protect the injured neonatal brain, high levels of reducing equivalents in activated microglia, GSH, trigger superoxide production, favor the reorganization of lipids, amplify local inflammation and exacerbate injury.


Subject(s)
Animals, Newborn/physiology , Brain/physiology , Microglia/physiology , Stroke/physiopathology , Animals , Blotting, Western , Caspase 3/physiology , Cell Death/physiology , Chemokines/analysis , Chemokines/biosynthesis , Cytokines/analysis , Cytokines/biosynthesis , Echo-Planar Imaging , Female , Fluorescent Antibody Technique , Glutathione/metabolism , Glutathione/pharmacology , Inflammation/pathology , Lipid Metabolism/physiology , Magnetic Resonance Imaging , Male , Phagocytosis/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Reperfusion Injury/pathology
20.
Transl Stroke Res ; 13(3): 449-461, 2022 06.
Article in English | MEDLINE | ID: mdl-34674145

ABSTRACT

The fetus is strongly dependent on nutrients from the mother, including polyunsaturated fatty acids (PUFA). In adult animals, n-3 PUFA ameliorates stroke-mediated brain injury, but the modulatory effects of different PUFA content in maternal diet on focal arterial stroke in neonates are unknown. This study explored effects of maternal n-3 or n-6 enriched PUFA diets on neonatal stroke outcomes. Pregnant mice were assigned three isocaloric diets until offspring reached postnatal day (P) 10-13: standard, long-chain n-3 PUFA (n-3) or n-6 PUFA (n-6) enriched. Fatty acid profiles in plasma and brain of mothers and pups were determined by gas chromatography-mass spectrometry and cytokines/chemokines by multiplex protein analysis. Transient middle cerebral artery occlusion (tMCAO) was induced in P9-10 pups and cytokine and chemokine accumulation, caspase-3 and calpain-dependent spectrin cleavage and brain infarct volume were analyzed. The n-3 diet uniquely altered brain lipid profile in naïve pups. In contrast, cytokine and chemokine levels did not differ between n-3 and n-6 diet in naïve pups. tMCAO triggered accumulation of inflammatory cytokines and caspase-3-dependent and -independent cell death in ischemic-reperfused regions in pups regardless of diet, but magnitude of neuroinflammation and caspase-3 activation were attenuated in pups on n-3 diet, leading to protection against neonatal stroke. In conclusion, maternal/postnatal n-3 enriched diet markedly rearranges neonatal brain lipid composition and modulates the response to ischemia. While standard diet is sufficient to maintain low levels of inflammatory cytokines and chemokines under physiological conditions, n-3 PUFA enriched diet, but not standard diet, attenuates increases of inflammatory cytokines and chemokines in ischemic-reperfused regions and protects from neonatal stroke.


Subject(s)
Fatty Acids, Omega-3 , Stroke , Animals , Brain/metabolism , Caspase 3/metabolism , Chemokines , Cytokines/metabolism , Diet , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated/metabolism , Female , Mice , Pregnancy , Stroke/metabolism , Stroke/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL