ABSTRACT
By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.
Subject(s)
Bacteria/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Metabolome , Metagenome , Microbiota , Adult , Aged , Aged, 80 and over , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/genetics , Drug Resistance, Microbial , Feces/microbiology , Female , Genomic Instability , Humans , Longitudinal Studies , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Virulence Factors/genetics , Virulence Factors/metabolism , Young AdultABSTRACT
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.
Subject(s)
Antibodies , Bacteriophages , Humans , Antigens , Epitopes/genetics , PeptidesABSTRACT
Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.
Subject(s)
Bacteriophages , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Antibodies , EpitopesABSTRACT
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Subject(s)
Biomarkers , Feces , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Metabolomics , Humans , Inflammatory Bowel Diseases/metabolism , Metabolomics/methods , Feces/chemistry , Feces/microbiology , Biomarkers/metabolism , Biomarkers/analysis , Gastrointestinal Microbiome/physiology , Bile Acids and Salts/metabolismABSTRACT
OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.
Subject(s)
Arylamine N-Acetyltransferase , Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Genome-Wide Association Study , Inflammatory Bowel Diseases/metabolism , Colitis, Ulcerative/metabolism , Metabolome , Feces , Arylamine N-Acetyltransferase/metabolismABSTRACT
BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.
Subject(s)
Crohn Disease , Enteritis , Fatty Acids, Omega-3 , Animals , Crohn Disease/drug therapy , Endoribonucleases , Enteritis/chemically induced , Enteritis/drug therapy , Fatty Acids, Unsaturated , Humans , Inflammation/drug therapy , Mice , Protein Serine-Threonine Kinases , Toll-Like Receptor 2ABSTRACT
BACKGROUND & AIMS: It is currently unclear whether reported changes in the gut microbiome are cause or consequence of inflammatory bowel disease (IBD). Therefore, we studied the gut microbiome of IBD-discordant and -concordant twin pairs, which offers the unique opportunity to assess individuals at increased risk of developing IBD, namely healthy cotwins from IBD-discordant twin pairs. METHODS: Fecal samples were obtained from 99 twins (belonging to 51 twin pairs), 495 healthy age-, sex-, and body mass index-matched controls, and 99 unrelated patients with IBD. Whole-genome metagenomic shotgun sequencing was performed. Taxonomic and functional (pathways) composition was compared among healthy cotwins, IBD-twins, unrelated patients with IBD, and healthy controls with multivariable (ie, adjusted for potential confounding) generalized linear models. RESULTS: No significant differences were observed in the relative abundance of species and pathways between healthy cotwins and their IBD-twins (false discovery rate <0.10). Compared with healthy controls, 13, 19, and 18 species, and 78, 105, and 153 pathways were found to be differentially abundant in healthy cotwins, IBD-twins, and unrelated patients with IBD, respectively (false discovery rate <0.10). Of these, 8 (42.1%) of 19 and 1 (5.6%) of 18 species, and 37 (35.2%) of 105 and 30 (19.6%) of 153 pathways overlapped between healthy cotwins and IBD-twins, and healthy cotwins and unrelated patients with IBD, respectively. Many of the shared species and pathways have previously been associated with IBD. The shared pathways include potentially inflammation-related pathways, for example, an increase in propionate degradation and L-arginine degradation pathways. CONCLUSIONS: The gut microbiome of healthy cotwins from IBD-discordant twin pairs displays IBD-like signatures. These IBD-like microbiome signatures might precede the onset of IBD. However, longitudinal follow-up studies are needed to infer a causal relationship.
Subject(s)
Gastrointestinal Microbiome , Inflammatory Breast Neoplasms/epidemiology , Inflammatory Breast Neoplasms/microbiology , Adult , Antigens, Bacterial/biosynthesis , Case-Control Studies , Cross-Sectional Studies , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Male , Metagenomics , Middle Aged , Netherlands/epidemiology , Phenotype , Risk Factors , Siderophores/biosynthesis , Twins, Dizygotic , Twins, Monozygotic , Young AdultABSTRACT
OBJECTIVE: The microbiome directly affects the balance of pro-inflammatory and anti-inflammatory responses in the gut. As microbes thrive on dietary substrates, the question arises whether we can nourish an anti-inflammatory gut ecosystem. We aim to unravel interactions between diet, gut microbiota and their functional ability to induce intestinal inflammation. DESIGN: We investigated the relation between 173 dietary factors and the microbiome of 1425 individuals spanning four cohorts: Crohn's disease, ulcerative colitis, irritable bowel syndrome and the general population. Shotgun metagenomic sequencing was performed to profile gut microbial composition and function. Dietary intake was assessed through food frequency questionnaires. We performed unsupervised clustering to identify dietary patterns and microbial clusters. Associations between diet and microbial features were explored per cohort, followed by a meta-analysis and heterogeneity estimation. RESULTS: We identified 38 associations between dietary patterns and microbial clusters. Moreover, 61 individual foods and nutrients were associated with 61 species and 249 metabolic pathways in the meta-analysis across healthy individuals and patients with IBS, Crohn's disease and UC (false discovery rate<0.05). Processed foods and animal-derived foods were consistently associated with higher abundances of Firmicutes, Ruminococcus species of the Blautia genus and endotoxin synthesis pathways. The opposite was found for plant foods and fish, which were positively associated with short-chain fatty acid-producing commensals and pathways of nutrient metabolism. CONCLUSION: We identified dietary patterns that consistently correlate with groups of bacteria with shared functional roles in both, health and disease. Moreover, specific foods and nutrients were associated with species known to infer mucosal protection and anti-inflammatory effects. We propose microbial mechanisms through which the diet affects inflammatory responses in the gut as a rationale for future intervention studies.
Subject(s)
Beverages , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Diet , Food , Gastrointestinal Microbiome , Irritable Bowel Syndrome/microbiology , Adult , Bacteria/isolation & purification , Feces/microbiology , Humans , Inflammation/microbiology , Inflammation/physiopathology , Metagenomics , Middle Aged , Surveys and Questionnaires , Time FactorsABSTRACT
OBJECTIVE: Both the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. DESIGN: To evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics. RESULTS: We identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15. CONCLUSION: This study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.
Subject(s)
Exome Sequencing , Gastrointestinal Microbiome/genetics , Genetic Predisposition to Disease/genetics , Inflammatory Bowel Diseases/etiology , Adaptor Proteins, Signal Transducing/genetics , Adult , Case-Control Studies , DNA Copy Number Variations/genetics , Female , Gene Frequency/genetics , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Male , Membrane Proteins/genetics , Metagenomics , Middle Aged , Quantitative Trait Loci/genetics , Receptors, Interleukin-17/genetics , Transcription Factors/genetics , Vesicular Transport Proteins/geneticsABSTRACT
OBJECTIVE: Patients with IBD display substantial heterogeneity in clinical characteristics. We hypothesise that individual differences in the complex interaction of the host genome and the gut microbiota can explain the onset and the heterogeneous presentation of IBD. Therefore, we performed a case-control analysis of the gut microbiota, the host genome and the clinical phenotypes of IBD. DESIGN: Stool samples, peripheral blood and extensive phenotype data were collected from 313 patients with IBD and 582 truly healthy controls, selected from a population cohort. The gut microbiota composition was assessed by tag-sequencing the 16S rRNA gene. All participants were genotyped. We composed genetic risk scores from 11 functional genetic variants proven to be associated with IBD in genes that are directly involved in the bacterial handling in the gut: NOD2, CARD9, ATG16L1, IRGM and FUT2. RESULTS: Strikingly, we observed significant alterations of the gut microbiota of healthy individuals with a high genetic risk for IBD: the IBD genetic risk score was significantly associated with a decrease in the genus Roseburia in healthy controls (false discovery rate 0.017). Moreover, disease location was a major determinant of the gut microbiota: the gut microbiota of patients with colonic Crohn's disease (CD) is different from that of patients with ileal CD, with a decrease in alpha diversity associated to ileal disease (p=3.28×10-13). CONCLUSIONS: We show for the first time that genetic risk variants associated with IBD influence the gut microbiota in healthy individuals. Roseburia spp are acetate-to-butyrate converters, and a decrease has already been observed in patients with IBD.
Subject(s)
Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Adult , Case-Control Studies , Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Crohn Disease/genetics , Crohn Disease/microbiology , Crohn Disease/pathology , Dysbiosis/complications , Dysbiosis/genetics , Dysbiosis/microbiology , Feces/microbiology , Female , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Humans , Inflammatory Bowel Diseases/pathology , Male , Middle Aged , Risk Assessment/methods , Severity of Illness IndexABSTRACT
Objectives: Environmental factors in the aetiology of primary Sjögren's syndrome (pSS) are largely unknown. Host-microbiome interaction at mucosal surfaces is presumed to be involved in the aetiopathogenesis of pSS. Here, we assessed whether the microbiome of the buccal mucosa is specific for pSS compared with symptom-controls. Methods: The bacterial composition of buccal swab samples from 37 pSS patients, 86 non-SS sicca patients (with similar dryness symptoms to pSS patients, but not fulfilling the classification criteria) and 24 healthy controls (HCs) was determined with 16S rRNA sequencing. Multivariate Association with Linear Models was used to find associations between individual taxa and pSS, taking into account smoking and dental status. Associations were replicated in a general population cohort (n = 103). Results: The buccal mucosa microbiome of pSS and non-SS sicca patients both differed from HCs. A higher Firmicutes/Proteobacteria ratio was characteristic for both pSS and non-SS sicca patients. Disease status (pSS, non-SS sicca, HCs) and salivary secretion rate contributed almost equally to the variation in bacterial composition between individuals (3.8 and 4.3%, respectively). Two taxa were associated with pSS compared with non-SS sicca patients and 19 compared with HCs. When salivary secretion rate was taken into account, no taxon was associated with pSS compared with non-SS sicca. Twelve of the 19 pSS-associated taxa were correlated with salivary secretion. Conclusion: Dysbiosis of the buccal mucosa microbiome in pSS patients resembles that of symptom-controls. The buccal mucosa microbiome in pSS patients is determined by a combination of reduced salivary secretion and disease-specific factors.
Subject(s)
Dysbiosis/microbiology , Microbiota , Mouth Mucosa/microbiology , Sjogren's Syndrome/microbiology , Aged , Case-Control Studies , Female , Humans , Linear Models , Male , Middle Aged , Multivariate Analysis , RNA, Ribosomal, 16S , Saliva/microbiologyABSTRACT
BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. METHODS: The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. RESULTS: 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate <0.05). Multiple oral bacteria were over-represented in the faecal microbiome of PPI-users, including the genus Rothia (p=9.8×10(-38)). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. CONCLUSIONS: The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs.
Subject(s)
Gastrointestinal Microbiome/drug effects , Proton Pump Inhibitors/pharmacology , Adult , Female , Humans , Male , Middle AgedABSTRACT
BACKGROUND: Inflammatory bowel diseases (IBDs) pose a significant challenge due to their diverse, often debilitating, and unpredictable clinical manifestations. The absence of prognostic tools to anticipate the future complications that require therapy intensification presents a substantial burden to patient private life and health. We aimed to explore whether the gut microbiome is a potential biomarker for future therapy intensification in a cohort of 90 IBD patients. METHODS: We conducted whole-genome metagenomics sequencing on fecal samples from these patients, allowing us to profile the taxonomic and functional composition of their gut microbiomes. Additionally, we conducted a retrospective analysis of patients' electronic records over a period of 10 years following the sample collection and classified patients into (1) those requiring and (2) not requiring therapy intensification. Therapy intensification included medication escalation, intestinal resections, or a loss of response to a biological treatment. We applied gut microbiome diversity analysis, dissimilarity assessment, differential abundance analysis, and random forest modeling to establish associations between baseline microbiome profiles and future therapy intensification. RESULTS: We identified 12 microbial species (eg, Roseburia hominis and Dialister invisus) and 16 functional pathways (eg, biosynthesis of L-citrulline and L-threonine) with significant correlations to future therapy intensifications. Random forest models using microbial species and pathways achieved areas under the curve of 0.75 and 0.72 for predicting therapy intensification. CONCLUSIONS: The gut microbiome is a potential biomarker for therapy intensification in IBD patients and personalized management strategies. Further research should validate our findings in other cohorts to enhance the generalizability of these results.
Ninety IBD patients were followed-up for 10 years after producing a fecal sample. During this period, 36% of the patients required therapy intensification. We show that the gut microbiome at baseline is associated with, and might hold predictive value for future necessity of therapy intensification.
Subject(s)
Feces , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Metagenomics , Humans , Female , Follow-Up Studies , Male , Adult , Retrospective Studies , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Feces/microbiology , Middle Aged , Metagenomics/methods , Prognosis , Predictive Value of Tests , Biomarkers/analysis , Young AdultABSTRACT
Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.
Subject(s)
Host Microbial Interactions , Inflammatory Bowel Diseases , Humans , Host Microbial Interactions/genetics , Tumor Necrosis Factor-alpha/genetics , Inflammatory Bowel Diseases/pathology , Phenotype , Inflammation/genetics , Inflammation/pathology , Fatty Acids , Intestinal Mucosa/pathologyABSTRACT
Early development of the gut ecosystem is crucial for lifelong health. While infant gut bacterial communities have been studied extensively, the infant gut virome remains under-explored. To study the development of the infant gut virome over time and the factors that shape it, we longitudinally assess the composition of gut viruses and their bacterial hosts in 30 women during and after pregnancy and in their 32 infants during their first year of life. Using shotgun metagenomic sequencing applied to dsDNA extracted from Virus-Like Particles (VLPs) and bacteria, we generate 205 VLP metaviromes and 322 total metagenomes. With this data, we show that while the maternal gut virome composition remains stable during late pregnancy and after birth, the infant gut virome is dynamic in the first year of life. Notably, infant gut viromes contain a higher abundance of active temperate phages compared to maternal gut viromes, which decreases over the first year of life. Moreover, we show that the feeding mode and place of delivery influence the gut virome composition of infants. Lastly, we provide evidence of co-transmission of viral and bacterial strains from mothers to infants, demonstrating that infants acquire some of their virome from their mother's gut.
Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Microbiota , Viruses , Infant , Humans , Female , Pregnancy , Mothers , Bacteriophages/genetics , Bacteria/geneticsABSTRACT
Emerging evidence suggests the gut microbiome's potential in predicting response to biologic treatments in patients with inflammatory bowel disease (IBD). In this prospective study, we aimed to predict treatment response to vedolizumab and ustekinumab, integrating clinical data, gut microbiome profiles based on metagenomic sequencing, and untargeted fecal metabolomics. We aimed to identify predictive biomarkers and attempted to replicate microbiome-based signals from previous studies. We found that the predictive utility of the gut microbiome and fecal metabolites for treatment response was marginal compared to clinical features alone. Testing our identified microbial ratios in an external cohort reinforced the lack of predictive power of the microbiome. Additionally, we could not confirm previously published predictive signals observed in similar sized cohorts. Overall, these findings highlight the importance of external validation and larger sample sizes, to better understand the microbiome's impact on therapy outcomes in the setting of biologicals in IBD before potential clinical implementation.
Subject(s)
Antibodies, Monoclonal, Humanized , Feces , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Metabolome , Ustekinumab , Gastrointestinal Microbiome/drug effects , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Metabolome/drug effects , Ustekinumab/therapeutic use , Prospective Studies , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Feces/microbiology , Female , Male , Adult , Biological Therapy/methods , Treatment Outcome , Middle Aged , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/drug effects , Bacteria/isolation & purification , Biomarkers/analysis , Biomarkers/metabolismSubject(s)
Microbiota , Mouth/microbiology , Saliva/metabolism , Salivary Glands/metabolism , Sjogren's Syndrome/microbiology , Adult , Female , Humans , Male , Middle Aged , Sjogren's Syndrome/metabolismABSTRACT
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.