Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
Add more filters

Publication year range
1.
Immunity ; 54(10): 2169-2171, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644549

ABSTRACT

For new principal investigators, the first years are key to getting a laboratory off the ground and running. COVID-19 has changed the world, bringing on unforeseen difficulties and challenges at every level. We asked these investigators to share their experiences in navigating the unique environment since the start of the pandemic-what has changed in their vision for their laboratory, how they have adapted, and what advice they can share with others in a similar situation.


Subject(s)
COVID-19/epidemiology , Laboratories , Adaptation, Psychological , Biomedical Research/trends , COVID-19/psychology , Communication , Humans , Laboratories/trends , Laboratory Personnel/psychology , Laboratory Personnel/trends , SARS-CoV-2
2.
Cell ; 159(2): 318-32, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25303528

ABSTRACT

Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Esters/metabolism , Fatty Acids/metabolism , Adult , Animals , Diabetes Mellitus, Type 2/diet therapy , Diet , Esters/administration & dosage , Esters/analysis , Fatty Acids/administration & dosage , Fatty Acids/analysis , Female , Glucagon-Like Peptide 1/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Humans , Inflammation/diet therapy , Insulin/metabolism , Insulin Resistance , Lipogenesis , Male , Mass Spectrometry , Mice, Inbred C57BL , Middle Aged , Receptors, G-Protein-Coupled/metabolism
3.
EMBO J ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284909

ABSTRACT

While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether F1Fo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called "reverse mode" of ATP synthase) is increased in brown fat. In cultured brown adipocytes, IF1 overexpression results in an inability of mitochondria to sustain the MMP upon adrenergic stimulation, leading to a quiescent-like phenotype in brown adipocytes. In mice, adeno-associated virus-mediated IF1 overexpression in BAT suppresses adrenergic-stimulated thermogenesis and decreases mitochondrial respiration in BAT. Taken together, our work identifies downregulation of IF1 upon cold as a critical event for the facilitation of the reverse mode of ATP synthase as well as to enable energetic adaptation of BAT to effectively support non-shivering thermogenesis.

4.
PLoS Biol ; 21(1): e3001973, 2023 01.
Article in English | MEDLINE | ID: mdl-36716309

ABSTRACT

Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.


Subject(s)
Neurosciences , Transcranial Direct Current Stimulation , Brain/physiology , Electricity , Neurons/physiology
5.
PLoS Biol ; 20(5): e3001650, 2022 05.
Article in English | MEDLINE | ID: mdl-35613140

ABSTRACT

Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.


Subject(s)
Transcranial Direct Current Stimulation , Animals , Brain/physiology , Neurons/physiology , Primates , Stereotaxic Techniques , Transcranial Direct Current Stimulation/methods
6.
Am J Physiol Endocrinol Metab ; 326(5): E681-E695, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38597829

ABSTRACT

Hypothalamic proopiomelanocortin (POMC) neurons are sensors of signals that reflect the energy stored in the body. Inducing mild stress in proopiomelanocortin neurons protects them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift toward greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.NEW & NOTEWORTHY Saturated fats can damage hypothalamic neurons resulting in positive energy balance, and this is mitigated by mild cellular stress; however, the mechanisms behind this protective effect are unknown. Using a proopiomelanocortin cell line, we show that under exposure to a high concentration of palmitate, the partial inhibition of the mitochondrial protein Crif1 results in protection due to a metabolic shift warranted by the increased expression and activity of the mitochondrial fatty acid transporter CPT-1.


Subject(s)
Carnitine O-Palmitoyltransferase , Cell Cycle Proteins , Fatty Acids , Mitochondria , Animals , Mice , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Cell Line , Fatty Acids/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Neurons/drug effects , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Reactive Oxygen Species/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism
7.
Acta Neuropathol ; 147(1): 64, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38556574

ABSTRACT

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Subject(s)
Prader-Willi Syndrome , Humans , Mice , Animals , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/psychology , Microglia , Carrier Proteins/genetics , Phenotype , Phagosomes , Adaptor Proteins, Signal Transducing/genetics
8.
Planta Med ; 90(2): 111-125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37935353

ABSTRACT

Seborrheic dermatitis is a chronic inflammatory disease caused by Malassezia yeast species that affects the regions of the body where the sebaceous glands are present. The combined use of different essential oils (EOs) can increase their spectrum of action. Thus, the present study aimed to evaluate the action of EOs alone and in combination with each other on M. furfur, in planktonic and biofilm form, and their anti-inflammatory and mutagenic potential, in addition to the effects on the viability of cells lines. Of the 40 evaluated EOs, 22 showed activity against M. furfur at 0.5 - 2.0 mg/mL concentrations. Among the most active species, a blend of essential oils (BEOs) composed of Cymbopogon martini (Roxb.) Will. Watson (MIC = 0.5 mg/mL) and Mentha × piperita L. (MIC = 1.0 mg/mL) was selected, which showed a synergistic effect against yeast when evaluated through the checkerboard assay. The fungicidal activity was maintained by the addition of anti-inflammatory oil from Varronia curassavica Jacq. to BEOs. The BEOs also showed activity in the inhibition of biofilm formation and in the eradication of the biofilm formed by M. furfur, being superior to the action of fluconazole. Furthermore, it did not show mutagenic potential and did not interfere with the cell viability of both evaluated cell lines (HaCaT and BMDMs). TNF-α levels were reduced only by C. martini; however, this property was maintained when evaluating BEOs. BEOs had no effect on IL-8 levels. Thus, the BEOs may be indicated for alternative treatments against seborrheic dermatitis.


Subject(s)
Dermatitis, Seborrheic , Malassezia , Oils, Volatile , Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Dermatitis, Seborrheic/drug therapy , Anti-Inflammatory Agents/pharmacology
9.
Dis Esophagus ; 37(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-38670807

ABSTRACT

Reasons for structural and outcome differences in esophageal cancer surgery in Western Europe remain unclear. This questionnaire study aimed to identify differences in the organization of esophageal cancer surgical care in Western Europe. A cross-sectional international questionnaire study was conducted among upper gastrointestinal (GI) surgeons from Western Europe. One surgeon per country was selected based on scientific output and active membership in the European Society for Diseases of the Esophagus or (inter)national upper GI committee. The questionnaire consisted of 51 structured questions on the structural organization of esophageal cancer surgery, surgical training, and clinical audit processes. Between October 2021 and October 2022, 16 surgeons from 16 European countries participated in this study. In 5 countries (31%), a volume threshold was present ranging from 10 to 26 annual esophagectomies, in 7 (44%) care was centralized in designated centers, and in 4 (25%) no centralizing regulations were present. The number of centers performing esophageal cancer surgery per country differed from 4 to 400, representing 0.5-4.9 centers per million inhabitants. In 4 countries (25%), esophageal cancer surgery was part of general surgical training and 8 (50%) reported the availability of upper GI surgery fellowships. A national audit for upper GI surgery was present in 8 (50%) countries. If available, all countries use the audit to monitor the quality of care. Substantial differences exist in the organization and centralization of esophageal cancer surgical care in Western Europe. The exchange of experience in the organizational aspects of care could further improve the results of esophageal cancer surgical care in Europe.


Subject(s)
Esophageal Neoplasms , Esophagectomy , Esophageal Neoplasms/surgery , Humans , Europe , Cross-Sectional Studies , Esophagectomy/statistics & numerical data , Surveys and Questionnaires , Surgeons/statistics & numerical data , Male
10.
Ecotoxicol Environ Saf ; 275: 116254, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38547729

ABSTRACT

Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Mercury , Animals , Mice , Atherosclerosis/chemically induced , Hydrogen Peroxide , Kidney Diseases , Mercury/toxicity , Mice, Knockout , Oxidative Stress/physiology , Receptors, LDL/genetics
11.
Sensors (Basel) ; 24(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39205139

ABSTRACT

This study presents a novel approach to enhancing indoor navigation in crowded multi-terminal airports using visible light communication (VLC) technology. By leveraging existing luminaires as transmission points, encoded messages are conveyed through modulated light signals to provide location-specific guidance. The objectives are to facilitate navigation, optimize routes, and improve system performance through Edge/Fog integration. The methodology includes the use of tetrachromatic LED-equipped luminaires with On-Off Keying (OOK) modulation and a mesh cellular hybrid structure. Detailed airport modeling and user analysis (pedestrians and luggage/passenger carriers) equipped with PINPIN optical sensors are conducted. A VLC-specific communication protocol with coding and decoding techniques ensures reliable data transmission, while wayfinding algorithms offer real-time guidance. The results show effective data transmission and localization, enabling self-localization, travel direction inference, and route optimization. Agent-based simulations demonstrate improved traffic control, with analyses of user halting and average speed. This approach provides reliable indoor navigation independent of GPS signals, enhancing accessibility and convenience for airport users. The integration of VLC with Edge/Fog architecture ensures efficient movement through complex airport layouts.

12.
PLoS Pathog ; 17(5): e1009597, 2021 05.
Article in English | MEDLINE | ID: mdl-33989349

ABSTRACT

Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1ß release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1ß release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections.


Subject(s)
Brucella abortus/immunology , Brucellosis/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Animals , Brucellosis/immunology , Brucellosis/microbiology , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
13.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article in English | MEDLINE | ID: mdl-36889041

ABSTRACT

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
14.
Bioscience ; 73(7): 494-512, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37560322

ABSTRACT

Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.

15.
PLoS Biol ; 18(10): e3000834, 2020 10.
Article in English | MEDLINE | ID: mdl-33001971

ABSTRACT

Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain's endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons.


Subject(s)
Somatosensory Cortex/physiology , Transcranial Direct Current Stimulation , Anesthesia , Animals , Lidocaine, Prilocaine Drug Combination/pharmacology , Macaca mulatta , Male , Neurons/drug effects , Neurons/physiology , Sensation/drug effects , Sensation/physiology , Somatosensory Cortex/drug effects
16.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1649-1664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37039888

ABSTRACT

Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.


Subject(s)
Induced Pluripotent Stem Cells , Schizophrenia , Adult , Humans , Schizophrenia/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Reactive Oxygen Species/metabolism , Proteomics , Cell Cycle Checkpoints , Mitochondria/metabolism
17.
Proc Natl Acad Sci U S A ; 117(49): 31309-31318, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33214151

ABSTRACT

Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1ß (IL1ß) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1ß is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1ß. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1ß levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Retinol-Binding Proteins, Plasma/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue, White/pathology , Animals , Glucose/pharmacology , Glycolysis/drug effects , Humans , Inflammation/pathology , Insulin Resistance , Interleukin-1beta/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Tumor Necrosis Factor-alpha/metabolism
18.
J Neurochem ; 163(2): 113-132, 2022 10.
Article in English | MEDLINE | ID: mdl-35880385

ABSTRACT

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Subject(s)
COVID-19 , Animals , Astrocytes , Carbon , Cricetinae , Disease Models, Animal , Glucose , Glutamine , Ketoglutaric Acids , Mesocricetus , Pyruvates , SARS-CoV-2
19.
Phys Rev Lett ; 129(22): 221601, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493435

ABSTRACT

We consider correlation functions of single trace operators approaching the cusps of null polygons in a double-scaling limit where so-called cusp times t_{i}^{2}=g^{2}logx_{i-1,i}^{2}logx_{i,i+1}^{2} are held fixed and the 't Hooft coupling is small. With the help of stampedes, symbols, and educated guesses, we find that any such correlator can be uniquely fixed through a set of coupled lattice PDEs of Toda type with several intriguing novel features. These results hold for most conformal gauge theories with a large number of colors, including planar N=4 SYM.


Subject(s)
Physics
20.
Proc Natl Acad Sci U S A ; 116(12): 5747-5755, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30833389

ABSTRACT

Spike timing is thought to play a critical role in neural computation and communication. Methods for adjusting spike timing are therefore of great interest to researchers and clinicians alike. Transcranial electrical stimulation (tES) is a noninvasive technique that uses weak electric fields to manipulate brain activity. Early results have suggested that this technique can improve subjects' behavioral performance on a wide range of tasks and ameliorate some clinical conditions. Nevertheless, considerable skepticism remains about its efficacy, especially because the electric fields reaching the brain during tES are small, whereas the likelihood of indirect effects is large. Our understanding of its effects in humans is largely based on extrapolations from simple model systems and indirect measures of neural activity. As a result, fundamental questions remain about whether and how tES can influence neuronal activity in the human brain. Here, we demonstrate that tES, as typically applied to humans, affects the firing patterns of individual neurons in alert nonhuman primates, which are the best available animal model for the human brain. Specifically, tES consistently influences the timing, but not the rate, of spiking activity within the targeted brain region. Such effects are frequency- and location-specific and can reach deep brain structures; control experiments show that they cannot be explained by sensory stimulation or other indirect influences. These data thus provide a strong mechanistic rationale for the use of tES in humans and will help guide the development of future tES applications.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Transcranial Direct Current Stimulation/methods , Animals , Brain/physiology , Electric Stimulation/methods , Electroencephalography , Macaca mulatta/physiology , Male , Primates
SELECTION OF CITATIONS
SEARCH DETAIL