Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Microb Pathog ; 191: 106663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679246

ABSTRACT

Quorum sensing (QS) has a central role in biofilm lifestyle and antimicrobial resistance, and disrupting these signaling pathways is a promising strategy to control bacterial pathogenicity and virulence. In this study, the efficacy of three structurally related benzaldehydes (4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde)) in disrupting the las and pqs systems of Pseudomonas aeruginosa was investigated using bioreporter strains and computational simulations. Additionally, these benzaldehydes were combined with tobramycin and ciprofloxacin antibiotics to evaluate their ability to increase antibiotic efficacy in preventing and eradicating P. aeruginosa biofilms. To this end, the total biomass, metabolic activity and culturability of the biofilm cells were determined. In vitro assays results indicated that the aromatic aldehydes have potential to inhibit the las and pqs systems by > 80 %. Molecular docking studies supported these findings, revealing the aldehydes binding in the same pocket as the natural ligands or receptor proteins (LasR, PQSA, PQSE, PQSR). Benzaldehydes were shown to act as virulence factor attenuators, with vanillin achieving a 48 % reduction in pyocyanin production. The benzaldehyde-tobramycin combination led not only to a 60 % reduction in biomass production but also to a 90 % reduction in the metabolic activity of established biofilms. A similar result was observed when benzaldehydes were combined with ciprofloxacin. 4-Hydroxybenzaldehyde demonstrated relevant action in increasing biofilm susceptibility to ciprofloxacin, resulting in a 65 % reduction in biomass. This study discloses, for the first time, that the benzaldehydes studied are potent QS inhibitors and also enhancers of antibiotics antibiofilm activity against P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Benzaldehydes , Biofilms , Ciprofloxacin , Molecular Docking Simulation , Pseudomonas aeruginosa , Quorum Sensing , Tobramycin , Biofilms/drug effects , Quorum Sensing/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Benzaldehydes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tobramycin/pharmacology , Ciprofloxacin/pharmacology , Bacterial Proteins/metabolism , Virulence Factors/metabolism , Microbial Sensitivity Tests , Drug Synergism , Pyocyanine/metabolism , Trans-Activators/metabolism , Trans-Activators/antagonists & inhibitors
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587815

ABSTRACT

AIMS: Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS: The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION: This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.


Subject(s)
Acetates , Anti-Bacterial Agents , Biofilms , Cefoperazone , Cyclopropanes , Pseudomonas aeruginosa , Quinolines , Quorum Sensing , Sulfides , Pseudomonas aeruginosa/drug effects , Biofilms/drug effects , Sulfides/pharmacology , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Acetates/pharmacology , Quinolines/pharmacology , Cyclopropanes/pharmacology , Cefoperazone/pharmacology , Microbial Sensitivity Tests , Pyocyanine/metabolism , Ciprofloxacin/pharmacology , Quinolones/pharmacology
3.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35861550

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Protein Binding , Pyridines/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
4.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34684743

ABSTRACT

With tuberculosis still being one of leading causes of death in the world and the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), researchers have been seeking to find further therapeutic strategies or more specific molecular targets. PknB is one of the 11 Ser/Thr protein kinases of Mtb and is responsible for phosphorylation-mediated signaling, mainly involved in cell wall synthesis, cell division and metabolism. With the amount of structural information available and the great interest in protein kinases, PknB has become an attractive target for drug development. This work describes the optimization and application of an in silico computational protocol to find new PknB inhibitors. This multi-level computational approach combines protein-ligand docking, structure-based virtual screening, molecular dynamics simulations and free energy calculations. The optimized protocol was applied to screen a large dataset containing 129,650 molecules, obtained from the ZINC/FDA-Approved database, Mu.Ta.Lig Virtual Chemotheca and Chimiothèque Nationale. It was observed that the most promising compounds selected occupy the adenine-binding pocket in PknB, and the main interacting residues are Leu17, Val26, Tyr94 and Met155. Only one of the compounds was able to move the active site residues into an open conformation. It was also observed that the P-loop and magnesium position loops change according to the characteristics of the ligand. This protocol led to the identification of six compounds for further experimental testing while also providing additional structural information for the design of more specific and more effective derivatives.


Subject(s)
Drug Evaluation, Preclinical/methods , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Bacterial Proteins/chemistry , Computational Biology/methods , Computer Simulation , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tuberculosis/drug therapy
5.
Molecules ; 26(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34771025

ABSTRACT

A series of ß-amino alcohols were prepared by the reaction of eugenol epoxide with aliphatic and aromatic amine nucleophiles. The synthesized compounds were fully characterized and evaluated as potential insecticides through the assessment of their biological activity against Sf9 insect cells, compared with a commercial synthetic pesticide (chlorpyrifos, CHPY). Three derivatives bearing a terminal benzene ring, either substituted or unsubstituted, were identified as the most potent molecules, two of them displaying higher toxicity to insect cells than CHPY. In addition, the most promising molecules were able to increase the activity of serine proteases (caspases) pivotal to apoptosis and were more toxic to insect cells than human cells. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these molecules likely target acetylcholinesterase and/or the insect odorant-binding proteins and are able to form stable complexes with these proteins. Encapsulation assays in liposomes of DMPG and DPPC/DMPG (1:1) were performed for the most active compound, and high encapsulation efficiencies were obtained. A thermosensitive formulation was achieved with the compound release being more efficient at higher temperatures.


Subject(s)
Amino Alcohols/chemistry , Eugenol/chemistry , Insecticides/pharmacology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Insecticides/chemical synthesis , Insecticides/chemistry , Models, Molecular , Molecular Structure , Spodoptera
6.
FEBS Lett ; 598(13): 1655-1666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750637

ABSTRACT

Cymoxanil (CYM) is a widely used synthetic acetamide fungicide, but its biochemical mode of action remains elusive. Since CYM inhibits cell growth, biomass production, and respiration in Saccharomyces cerevisiae, we used this model to characterize the effect of CYM on mitochondria. We found it inhibits oxygen consumption in both whole cells and isolated mitochondria, specifically inhibiting cytochrome c oxidase (CcO) activity during oxidative phosphorylation. Based on molecular docking, we propose that CYM blocks the interaction of cytochrome c with CcO, hampering electron transfer and inhibiting CcO catalytic activity. Although other targets cannot be excluded, our data offer valuable insights into the mode of action of CYM that will be instrumental in driving informed management of the use of this fungicide.


Subject(s)
Electron Transport Complex IV , Fungicides, Industrial , Mitochondria , Molecular Docking Simulation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/enzymology , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/antagonists & inhibitors , Fungicides, Industrial/pharmacology , Fungicides, Industrial/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects , Oxidative Phosphorylation/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors
7.
Methods Mol Biol ; 2652: 261-267, 2023.
Article in English | MEDLINE | ID: mdl-37093481

ABSTRACT

Structure-based drug design (SBDD) has become an alternative to high throughput screening (HTS) as it reduces experimental costs and time. It works like a funnel, filtering out compounds that do not show good affinity (or score) toward a particular target, with known 3D structure.Here, we describe a protocol for structure-based drug design using a multi-level in silico approach, combining Molecular Docking, Virtual Screening, Molecular Dynamics Simulations and Free energy calculations to find new lead molecules for experimental testing, predict binding affinities and characterize binding modes.


Subject(s)
High-Throughput Screening Assays , Molecular Dynamics Simulation , Molecular Docking Simulation , Protein Binding , Drug Design , Ligands
8.
Antibiotics (Basel) ; 11(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35203788

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer physical stability, increase virulence, and work as a protective armor against antimicrobial compounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation through a process called quorum sensing (QS), a rather complex and hierarchical system of communication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In this study, a combined multi-level computational approach was applied to find possible inhibitors against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations and MM/GBSA free-energy calculations were performed to confirm the docking predictions and elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding free energies of association than the reference molecules (a known antagonist, M64 and a natural inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.

9.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296773

ABSTRACT

A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against Sf9 (Spodoptera frugiperda) insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8 ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in Sf9 insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.

10.
Chem Biol Drug Des ; 97(4): 893-903, 2021 04.
Article in English | MEDLINE | ID: mdl-33314617

ABSTRACT

Breast cancer diagnosis remains a challenge, mostly due to its heterogeneity. This reality translates in delayed treatments, increasing treatment aggressiveness and lower chances of overall survival. The conventional detection techniques, although becoming increasingly sophisticated each year, still lack the ability to provide reliable conclusions without being time consuming, expensive, and uncomfortable for the patients. The identification of novel biomarkers for breast cancer research is therefore of utmost relevance for an early diagnosis. Moreover, breast cancer-specific peptide moieties can be used to develop novel targeted drug delivery systems. In this work, we used phage display to identify a novel peptide with specificity to the SK-BR-3 breast cancer cell line. Cytometry assays confirmed its specificity, while bioinformatics and docking studies predicted the potential biomarkers at the SK-BR-3 cells' surface. These findings can be potentially useful in the clinical context, contributing to more specific and targeted therapeutic solutions against HER2-positive breast cancer subtypes.


Subject(s)
Peptides/metabolism , Amino Acid Sequence , Binding Sites , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CX3C Chemokine Receptor 1/chemistry , CX3C Chemokine Receptor 1/metabolism , Cell Line, Tumor , Female , Humans , Molecular Docking Simulation , Peptide Library , Peptides/chemistry , Protein Binding , Receptor, Anaphylatoxin C5a/chemistry , Receptor, Anaphylatoxin C5a/metabolism
11.
RSC Adv ; 11(54): 34024-34035, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-35497284

ABSTRACT

New compounds with potential insecticide activity were synthesized by structural modifications performed in the monoterpenoid phenolic moieties of carvacrol and thymol, resulting in a set of derivatives with the ether function containing the propyl, chloropropyl or hydroxypropyl chains, as well as a bicyclic ether with an unsaturated chain containing a carboxylic acid terminal. In addition, an analogue of carvacrol and thymol isomers bearing methoxyl, 1-hydroxyethyl and (3-chlorobenzoyl)oxy, instead of the three original methyl groups, was also synthesized. Several structural changes that resulted in diminished insecticide activity have been identified, but two significantly active molecules have been synthesized, one of them being less toxic to human cells than the naturally-derived starting materials. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these active molecules likely target the insect odorant binding proteins and/or acetylcholinesterase and are able to form stable complexes. For the most promising compounds, nanoencapsulation assays were carried out in liposomes of egg phosphatidylcholine/cholesterol (7 : 3) prepared by both thin film hydration and ethanolic injection methods. The compound-loaded liposomes were generally monodisperse and with sizes smaller than or around 200 nm. The thin film hydration method allowed high encapsulation efficiencies (above 85%) for both compounds and a delayed release, while for the systems prepared by ethanolic injection the encapsulation efficiency is lower than 50%, but the release is almost complete in two days.

12.
Trends Biotechnol ; 38(9): 937-940, 2020 09.
Article in English | MEDLINE | ID: mdl-32386874

ABSTRACT

The Biofilms Structural Database (BSD) is a collection of structural, mutagenesis, kinetics, and inhibition data to understand the processes involved in biofilm formation. Presently, it includes curated information on 425 structures of proteins and enzymes involved in biofilm formation and development for 42 different bacteria. It is available at www.biofilms.biosim.pt.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Databases, Factual , Mutagenesis/drug effects , Anti-Bacterial Agents/therapeutic use , Biofilms/growth & development , Kinetics , Mutagenesis/genetics , Quorum Sensing/drug effects , Quorum Sensing/genetics
13.
Front Microbiol ; 7: 1259, 2016.
Article in English | MEDLINE | ID: mdl-27555844

ABSTRACT

The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-ß-lactamases -VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable.

SELECTION OF CITATIONS
SEARCH DETAIL