Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Plant Cell ; 36(6): 2201-2218, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38376990

ABSTRACT

In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Homeostasis , Indoleacetic Acids , Nitric Oxide , Ovule , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Nitric Oxide/metabolism , Indoleacetic Acids/metabolism , Ovule/genetics , Ovule/growth & development , Ovule/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Glutathione Reductase
2.
Plant Cell ; 35(2): 924-941, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36472129

ABSTRACT

Heat shock protein 101 (HSP101) in plants, and bacterial and yeast orthologs, is essential for thermotolerance. To investigate thermotolerance mechanisms involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a missense HSP101 allele (hot1-4). hot1-4 plants are sensitive to acclimation heat treatments that are otherwise permissive for HSP101 null mutants, indicating that the hot1-4 protein is toxic. We report one suppressor (shot2, suppressor of hot1-4 2) has a missense mutation of a conserved residue in CLEAVAGE STIMULATION FACTOR77 (CstF77), a subunit of the polyadenylation complex critical for mRNA 3' end maturation. We performed ribosomal RNA depletion RNA-Seq and captured transcriptional readthrough with a custom bioinformatics pipeline. Acclimation heat treatment caused transcriptional readthrough in hot1-4 shot2, with more readthrough in heat-induced genes, reducing the levels of toxic hot1-4 protein and suppressing hot1-4 heat sensitivity. Although shot2 mutants develop like the wild type in the absence of stress and survive mild heat stress, reduction of heat-induced genes and decreased HSP accumulation makes shot2 in HSP101 null and wild-type backgrounds sensitive to severe heat stress. Our study reveals the critical function of CstF77 for 3' end formation of mRNA and the dominant role of HSP101 in dictating the outcome of severe heat stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Polyadenylation/genetics , Hot Temperature , Heat-Shock Response/genetics , Mutation/genetics , Arabidopsis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cleavage Stimulation Factor/genetics , Cleavage Stimulation Factor/metabolism
3.
Plant J ; 118(4): 1054-1070, 2024 May.
Article in English | MEDLINE | ID: mdl-38308388

ABSTRACT

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Subject(s)
Alcohol Dehydrogenase , Arabidopsis Proteins , Arabidopsis , Oxidation-Reduction , Arabidopsis/enzymology , Arabidopsis/genetics , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Substrate Specificity , S-Nitrosoglutathione/metabolism , Amino Acid Sequence , Ethanol/metabolism
4.
New Phytol ; 241(2): 715-731, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37932881

ABSTRACT

Heat stress interrupts physiological thermostability and triggers biochemical responses that are essential for plant survival. However, there is limited knowledge on the speed plants adjust to heat in hours and days, and which adjustments are crucial. Tropical-subtropical rainforest tree species (Polyscias elegans) were heated at 40°C for 5 d, before returning to 25°C for 13 d of recovery. Leaf heat tolerance was quantified using the temperature at which minimal chl a fluorescence sharply rose (Tcrit ). Tcrit , metabolites, heat shock protein (HSP) abundance and membrane lipid fatty acid (FA) composition were quantified. Tcrit increased by 4°C (48-52°C) within 2 h of 40°C exposure, along with rapid accumulation of metabolites and HSPs. By contrast, it took > 2 d for FA composition to change. At least 2 d were required for Tcrit , HSP90, HSP70 and FAs to return to prestress levels. The results highlight the multi-faceted response of P. elegans to heat stress, and how this response varies over the scale of hours to days, culminating in an increased level of photosynthetic heat tolerance. These responses are important for survival of plants when confronted with heat waves amidst ongoing global climate change.


Subject(s)
Thermotolerance , Heat-Shock Proteins/metabolism , Plants/metabolism , Rainforest , Temperature , Trees/metabolism , Tropical Climate
5.
Plant Cell Physiol ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37859594

ABSTRACT

ATAD3 proteins (ATPase family AAA domain-containing protein 3) are unique mitochondrial proteins that arose deep in the eukaryotic lineage but that are surprisingly absent from the Fungi and Amoebozoa. These ~600 amino acid proteins are anchored in the inner mitochondrial membrane and are essential in metazoans and Arabidopsis thaliana. ATAD3s comprise a C-terminal AAA+ matrix domain and an ATAD3_N domain that is located primarily in the inner membrane space but potentially extends into cytosol to interact with the ER. Sequence and structural alignments indicate ATAD3 proteins are most similar to classic chaperone unfoldases in AAA+ family, suggesting that they operate in mitochondrial protein quality control. A. thaliana has four ATAD3 genes in two distinct clades that appear first in the seed plants, and both clades are essential for viability. The four genes are generally coordinately expressed, and transcripts are highest in growing apices and imbibed seeds. Plants with disrupted ATAD3 have reduced growth, aberrant mitochondrial morphology, diffuse nucleoids and reduced oxidative phosphorylation complex I. These and other pleiotropic phenotypes are also observed in ATAD3 mutants in metazoans. Here we discuss the distribution of ATAD3 proteins as they have evolved in the plant kingdom, their unique structure, what we know about their function in plants, and the challenges in determining their essential roles in mitochondria.

6.
Plant J ; 107(3): 713-726, 2021 08.
Article in English | MEDLINE | ID: mdl-33974298

ABSTRACT

As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Heat-Shock Response/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Plant Stems/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Down-Regulation , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Gene Knockdown Techniques , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Plant Stems/enzymology , Protein Subunits , RNA Interference , Signal Transduction
7.
New Phytol ; 232(5): 2026-2042, 2021 12.
Article in English | MEDLINE | ID: mdl-34482561

ABSTRACT

Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. Here we discover that shot1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics
8.
New Phytol ; 230(6): 2261-2274, 2021 06.
Article in English | MEDLINE | ID: mdl-33338267

ABSTRACT

The nucellus tissue in flowering plants provides nutrition for the development of the female gametophyte (FG) and young embryo. The nucellus degenerates as the FG develops, but the mechanism controlling the coupled process of nucellar degeneration and FG expansion remains largely unknown. The degeneration process of the nucellus and spatiotemporal auxin distribution in the developing ovule before fertilization were investigated in Arabidopsis thaliana. Nucellar degeneration before fertilization occurs through vacuolar cell death and in an ordered degeneration fashion. This sequential nucellar degeneration is controlled by the signalling molecule auxin. Auxin efflux plays the core role in precisely controlling the spatiotemporal pattern of auxin distribution in the nucellus surrounding the FG. The auxin efflux carrier PIN1 transports maternal auxin into the nucellus while PIN3/PIN4/PIN7 further delivers auxin to degenerating nucellar cells and concurrently controls FG central vacuole expansion. Notably, auxin concentration and auxin efflux are controlled by the maternal tissues, acting as a key communication from maternal to filial tissue.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport , Indoleacetic Acids , Ovule/metabolism
9.
New Phytol ; 227(1): 24-37, 2020 07.
Article in English | MEDLINE | ID: mdl-32297991

ABSTRACT

Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a ß-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.


Subject(s)
Heat-Shock Proteins, Small , Heat-Shock Proteins, Small/genetics , Molecular Chaperones , Plant Proteins/genetics , Plants/genetics , Seeds
10.
Plant Physiol ; 180(4): 1829-1847, 2019 08.
Article in English | MEDLINE | ID: mdl-31113833

ABSTRACT

Stressful environments often lead to protein unfolding and the formation of cytotoxic aggregates that can compromise cell survival. The molecular chaperone heat shock protein (HSP) 101 is a protein disaggregase that co-operates with the small HSP (sHSP) and HSP70 chaperones to facilitate removal of such aggregates and is essential for surviving severe heat stress. To better define how HSP101 protects plants, we investigated the localization and targets of this chaperone in Arabidopsis (Arabidopsis thaliana). By following HSP101 tagged with GFP, we discovered that its intracellular distribution is highly dynamic and includes a robust, reversible sequestration into cytoplasmic foci that vary in number and size among cell types and are potentially enriched in aggregated proteins. Affinity isolation of HSP101 recovered multiple proteasome subunits, suggesting a functional interaction. Consistent with this, the GFP-tagged 26S proteasome regulatory particle non-ATPase (RPN) 1a transiently colocalized with HSP101 in cytoplasmic foci during recovery. In addition, analysis of aggregated (insoluble) proteins showed they are extensively ubiquitylated during heat stress, especially in plants deficient in HSP101 or class I sHSPs, implying that protein disaggregation is important for optimal proteasomal degradation. Many potential HSP101 clients, identified by mass spectrometry of insoluble proteins, overlapped with known stress granule constituents and sHSP-interacting proteins, confirming a role for HSP101 in stress granule function. Connections between HSP101, stress granules, proteasomes, and ubiquitylation imply that dynamic coordination between protein disaggregation and proteolysis is required to survive proteotoxic stress caused by protein aggregation at high temperatures.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Hot Temperature , Plant Proteins/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcription Factors/genetics
11.
Plant Cell ; 29(8): 1952-1969, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28808135

ABSTRACT

The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Eukaryotic Initiation Factors/genetics , Genetic Pleiotropy , Mutation/genetics , Protein Biosynthesis/genetics , Temperature , Alleles , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , DNA, Bacterial/genetics , Electron Transport/genetics , Eukaryotic Initiation Factors/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Heat-Shock Response/genetics , Indoleacetic Acids/metabolism , Mutagenesis, Insertional , Phenotype , Phylogeny , Plant Development , Polyribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Thermotolerance , Time Factors
12.
J Biol Chem ; 293(51): 19511-19521, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30348902

ABSTRACT

Small heat-shock proteins (sHsps) are ubiquitous molecular chaperones, and sHsp mutations or altered expression are linked to multiple human disease states. sHsp monomers assemble into large oligomers with dimeric substructure, and the dynamics of sHsp oligomers has led to major questions about the form that captures substrate, a critical aspect of their mechanism of action. We show here that substructural dimers of two plant dodecameric sHsps, Ta16.9 and homologous Ps18.1, are functional units in the initial encounter with unfolding substrate. We introduced inter-polypeptide disulfide bonds at the two dodecameric interfaces, dimeric and nondimeric, to restrict how their assemblies can dissociate. When disulfide-bonded at the nondimeric interface, mutants of Ta16.9 and Ps18.1 (TaCT-ACD and PsCT-ACD) were inactive but, when reduced, had WT-like chaperone activity, demonstrating that dissociation at nondimeric interfaces is essential for sHsp activity. Moreover, the size of the TaCT-ACD and PsCT-ACD covalent unit defined a new tetrahedral geometry for these sHsps, different from that observed in the Ta16.9 X-ray structure. Importantly, oxidized Tadimer (disulfide bonded at the dimeric interface) exhibited greatly enhanced ability to protect substrate, indicating that strengthening the dimeric interface increases chaperone efficiency. Temperature-induced size and secondary structure changes revealed that folded sHsp dimers interact with substrate and that dimer stability affects chaperone efficiency. These results yield a model in which sHsp dimers capture substrate before assembly into larger, heterogeneous sHsp-substrate complexes for substrate refolding or degradation, and suggest that tuning the strength of the dimer interface can be used to engineer sHsp chaperone efficiency.


Subject(s)
Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Protein Multimerization , Disulfides/chemistry , Heat-Shock Proteins/genetics , Malate Dehydrogenase/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Structure, Quaternary
13.
J Exp Bot ; 69(22): 5531-5545, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30476278

ABSTRACT

Wheat (Triticum aestivum) is particularly vulnerable to heat stress during the grain filling stage, and this can adversely affect the final yield. However, the underlying physiological and molecular mechanisms are largely unknown. In this study, the effects of heat stress on grain filling were investigated using wheat varieties with different levels of thermotolerance. Decreased grain weights and filling durations, increased protein contents, and stable filling rates across diverse varieties under different heat regimes suggested a general mechanism for heat adaptation. Proteomic analysis identified 309 heat-responsive proteins (HRPs), and revealed a general decrease in protein synthesis components and metabolic proteins, but a significant increase in stress-response proteins and storage proteins. Metabolomic analysis identified 98 metabolites specifically changed by heat stress, and suggested a global decrease in the content of carbohydrate metabolites, an increased content of amino acids, and stable levels of starch synthesis precursors. The energy-consuming HRPs suggested that less energy was channelled into metabolism and protein synthesis, whereas more energy was allocated to the stress response under elevated heat conditions. Collectively, the data demonstrated a widely distributed mechanism for heat adaptation of metabolism, in which the assimilation and energy required for metabolism and protein synthesis are reallocated to heat protection and deposition of reserves, resulting in increased storage protein accumulation and a stable filling rate.


Subject(s)
Heat-Shock Response , Plant Proteins/metabolism , Triticum/physiology , Adaptation, Physiological , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/physiology , Proteomics , Triticum/genetics , Triticum/growth & development
14.
Plant Physiol ; 172(2): 1221-1236, 2016 10.
Article in English | MEDLINE | ID: mdl-27474115

ABSTRACT

The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, ß-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bß. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules.


Subject(s)
Heat-Shock Proteins, Small/metabolism , Hot Temperature , Peptide Elongation Factors/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Electrophoresis, Gel, Two-Dimensional , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Gene Expression Regulation, Plant , Heat-Shock Proteins, Small/classification , Heat-Shock Proteins, Small/genetics , Immunoblotting , Peptide Elongation Factors/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological , Tandem Mass Spectrometry , Transcription Factors/genetics
15.
Trends Biochem Sci ; 37(3): 106-17, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22177323

ABSTRACT

The small heat shock proteins (sHSPs) and the related α-crystallins (αCs) are virtually ubiquitous proteins that are strongly induced by a variety of stresses, but that also function constitutively in multiple cell types in many organisms. Extensive research has demonstrated that a majority of sHSPs and αCs can act as ATP-independent molecular chaperones by binding denaturing proteins and thereby protecting cells from damage due to irreversible protein aggregation. As a result of their diverse evolutionary history, their connection to inherited human diseases, and their novel protein dynamics, sHSPs and αCs are of significant interest to many areas of biology and biochemistry. However, it is increasingly clear that no single model is sufficient to describe the structure, function or mechanism of action of sHSPs and αCs. In this review, we discuss recent data that provide insight into the variety of structures of these proteins, their dynamic behavior, how they recognize substrates, and their many possible cellular roles.


Subject(s)
Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins, Small/metabolism , Molecular Chaperones/metabolism , alpha-Crystallins/chemistry , alpha-Crystallins/metabolism , Amino Acid Sequence , Evolution, Molecular , Genetic Diseases, Inborn/metabolism , Heat-Shock Proteins, Small/physiology , Humans , Molecular Chaperones/chemistry , Molecular Sequence Data , Protein Conformation , Stress, Physiological , Substrate Specificity , alpha-Crystallins/physiology
16.
Biochemistry ; 55(17): 2452-64, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27064847

ABSTRACT

The free radical nitric oxide (NO(•)) regulates diverse physiological processes from vasodilation in humans to gas exchange in plants. S-Nitrosoglutathione (GSNO) is considered a principal nitroso reservoir due to its chemical stability. GSNO accumulation is attenuated by GSNO reductase (GSNOR), a cysteine-rich cytosolic enzyme. Regulation of protein nitrosation is not well understood since NO(•)-dependent events proceed without discernible changes in GSNOR expression. Because GSNORs contain evolutionarily conserved cysteines that could serve as nitrosation sites, we examined the effects of treating plant (Arabidopsis thaliana), mammalian (human), and yeast (Saccharomyces cerevisiae) GSNORs with nitrosating agents in vitro. Enzyme activity was sensitive to nitroso donors, whereas the reducing agent dithiothreitol (DTT) restored activity, suggesting that catalytic impairment was due to S-nitrosation. Protein nitrosation was confirmed by mass spectrometry, by which mono-, di-, and trinitrosation were observed, and these signals were sensitive to DTT. GSNOR mutants in specific non-zinc-coordinating cysteines were less sensitive to catalytic inhibition by nitroso donors and exhibited reduced nitrosation signals by mass spectrometry. Nitrosation also coincided with decreased tryptophan fluorescence, increased thermal aggregation propensity, and increased polydispersity-properties reflected by differential solvent accessibility of amino acids important for dimerization and the shape of the substrate and coenzyme binding pockets as assessed by hydrogen-deuterium exchange mass spectrometry. Collectively, these data suggest a mechanism for NO(•) signal transduction in which GSNOR nitrosation and inhibition transiently permit GSNO accumulation.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/metabolism , Arabidopsis/enzymology , Cysteine/metabolism , Nitric Oxide/metabolism , S-Nitrosoglutathione/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Cysteine/chemistry , Cytosol/enzymology , Humans , Nitrosation , Protein Conformation , Sequence Homology, Amino Acid , Signal Transduction
17.
New Phytol ; 232(2): 958, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34397106
18.
Plant Cell ; 24(8): 3349-65, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22942382

ABSTRACT

The molecular chaperone heat shock protein101 (HSP101) is required for acquired thermotolerance in plants and other organisms. To identify factors that interact with HSP101 or that are involved in thermotolerance, we screened for extragenic suppressors of a dominant-negative allele of Arabidopsis thaliana HSP101, hot1-4. One suppressor, shot1 (for suppressor of hot1-4 1), encodes a mitochondrial transcription termination factor (mTERF)-related protein, one of 35 Arabidopsis mTERFs about which there is limited functional data. Missense (shot1-1) and T-DNA insertion (shot1-2) mutants suppress the hot1-4 heat-hypersensitive phenotype. Furthermore, shot1-2 suppresses other heat-sensitive mutants, and shot1-2 alone is more heat tolerant than the wild type. SHOT1 resides in mitochondria, indicating it functions independently of cytosolic/nuclear HSP101. Microarray analysis suggests altered mitochondrial function and/or retrograde signaling in shot1-2 increases transcripts of other HSPs and alters expression of redox-related genes. Reduced oxidative damage is the likely cause of shot1 thermotolerance, indicating HSP101 repairs protein oxidative damage and/or reduced oxidative damage allows recovery in the absence of HSP101. Changes in organelle-encoded transcripts in shot1 demonstrate that SHOT1 is involved in organelle gene regulation. The heat tolerance of shot1 emphasizes the importance of mitochondria in stress tolerance, and defining its function may provide insights into control of oxidative damage for engineering stress-resistant plants.


Subject(s)
Acclimatization , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondrial Proteins/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Alleles , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genes, Mitochondrial , Genes, Plant , Heat-Shock Response , Hot Temperature , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mutagenesis, Insertional , Mutation , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Oxidative Stress , Phenotype , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Plastids/genetics , Plastids/metabolism , Transcription Factors/genetics , Transcription Termination, Genetic , Transcriptome
19.
Biophys J ; 106(12): 2644-55, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24940782

ABSTRACT

The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either "open" or "closed" based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency.


Subject(s)
Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins, Small/metabolism , Molecular Dynamics Simulation , Pisum sativum/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Triticum/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Solvents , Substrate Specificity , Temperature
20.
Proc Natl Acad Sci U S A ; 107(5): 2007-12, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20133845

ABSTRACT

Small Heat Shock Proteins (sHSPs) are a diverse family of molecular chaperones that prevent protein aggregation by binding clients destabilized during cellular stress. Here we probe the architecture and dynamics of complexes formed between an oligomeric sHSP and client by employing unique mass spectrometry strategies. We observe over 300 different stoichiometries of interaction, demonstrating that an ensemble of structures underlies the protection these chaperones confer to unfolding clients. This astonishing heterogeneity not only makes the system quite distinct in behavior to ATP-dependent chaperones, but also renders it intractable by conventional structural biology approaches. We find that thermally regulated quaternary dynamics of the sHSP establish and maintain the plasticity of the system. This extends the paradigm that intrinsic dynamics are crucial to protein function to include equilibrium fluctuations in quaternary structure, and suggests they are integral to the sHSPs' role in the cellular protein homeostasis network.


Subject(s)
Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins, Small/metabolism , Biophysical Phenomena , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Luciferases, Firefly/chemistry , Luciferases, Firefly/metabolism , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Multiprotein Complexes , Pisum sativum/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Multimerization , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL