Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Proc Natl Acad Sci U S A ; 121(23): e2316206121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805271

ABSTRACT

Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.


Subject(s)
Hydrogels , Light , Microalgae , Photosynthesis , Hydrogels/chemistry , Microalgae/growth & development , Microalgae/metabolism , Biomass , Photobioreactors
2.
Chem Rev ; 123(23): 12595-12756, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38011110

ABSTRACT

Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.

3.
Nat Mater ; 22(1): 18-35, 2023 01.
Article in English | MEDLINE | ID: mdl-36446962

ABSTRACT

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Subject(s)
Biomimetic Materials , Nanocomposites , Biomimetic Materials/chemistry , Nanocomposites/chemistry , Water/chemistry
4.
Ann Bot ; 134(1): 131-150, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38551515

ABSTRACT

BACKGROUND AND AIMS: Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS: We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS: By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS: Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.


Subject(s)
Biological Evolution , Cell Wall , Phylogeny , Plant Leaves , Plant Leaves/ultrastructure , Plant Leaves/anatomy & histology , Cell Wall/ultrastructure , Microscopy, Electron, Transmission , Color , Plant Epidermis/ultrastructure
5.
Soft Matter ; 20(17): 3695-3707, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629173

ABSTRACT

Cellulose nanocrystals (CNCs) are rod-like nanoparticles whose chiral self-assembly into photonic films has been promoted as a sustainable source of colouration. Upon drying, an aqueous CNC suspension passes through two regimes: first, a liquid phase, where the CNCs self-organise into a cholesteric liquid crystal, followed by a kinetically-arrested phase, where the helicoidal structure compresses upon loss of solvent, resulting in a solid film with vibrant structural colour. The transition between these two regimes plays an important role in the visual appearance of photonic CNC films, but details on when and how kinetic arrest occurs have remained elusive. In this work, we combine angle-resolved optical spectroscopy of photonic films (approx. 100 vol% CNC) with a model for compressed helicoidal structures to retrieve the suspension conditions during kinetic arrest (approx. 10 vol% CNC). This analysis indicates a shift in the mechanism of kinetic arrest from a glass transition at lower ionic strength to gelation at higher ionic strength, explaining the trends in domain size and film colour. In contrast, neutral additives (glucose, poly(ethylene glycol)) appear to primarily reduce the compression upon drying without affecting cholesteric behaviour, as supported by a general analytical model. These findings deepen our understanding of CNC co-assembly with various commonly-used additives, enabling better control over the production of multifunctional structurally coloured materials.

6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911759

ABSTRACT

Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.


Subject(s)
Cell Wall/chemistry , Commelinaceae/chemistry , Fruit/chemistry , Cell Wall/ultrastructure , Cellulose/chemistry , Color , Elastic Modulus , Microfibrils/chemistry , Polysaccharides/chemistry
7.
Nat Mater ; 21(7): 811-818, 2022 07.
Article in English | MEDLINE | ID: mdl-35256790

ABSTRACT

The rewiring of photosynthetic biomachineries to electrodes is a forward-looking semi-artificial route for sustainable bio-electricity and fuel generation. Currently, it is unclear how the electrode and biomaterial interface can be designed to meet the complex requirements for high biophotoelectrochemical performance. Here we developed an aerosol jet printing method for generating hierarchical electrode structures using indium tin oxide nanoparticles. We printed libraries of micropillar array electrodes varying in height and submicrometre surface features, and studied the energy/electron transfer processes across the bio-electrode interfaces. When wired to the cyanobacterium Synechocystis sp. PCC 6803, micropillar array electrodes with microbranches exhibited favourable biocatalyst loading, light utilization and electron flux output, ultimately almost doubling the photocurrent of state-of-the-art porous structures of the same height. When the micropillars' heights were increased to 600 µm, milestone mediated photocurrent densities of 245 µA cm-2 (the closest thus far to theoretical predictions) and external quantum efficiencies of up to 29% could be reached. This study demonstrates how bio-energy from photosynthesis could be more efficiently harnessed in the future and provide new tools for three-dimensional electrode design.


Subject(s)
Photosynthesis , Synechocystis , Electricity , Electrodes , Printing, Three-Dimensional
8.
Nat Mater ; 21(3): 352-358, 2022 03.
Article in English | MEDLINE | ID: mdl-34764430

ABSTRACT

Cellulose nanocrystals are renewable plant-based colloidal particles capable of forming photonic films by solvent-evaporation-driven self-assembly. So far, the cellulose nanocrystal self-assembly process has been studied only at a small scale, neglecting the limitations and challenges posed by the continuous deposition processes that are required to exploit this sustainable material in an industrial context. Here, we addressed these limitations by using roll-to-roll deposition to produce large-area photonic films, which required optimization of the formulation of the cellulose nanocrystal suspension and the deposition and drying conditions. Furthermore, we showed how metre-long structurally coloured films can be processed into effect pigments and glitters that are dispersible, even in water-based formulations. These promising effect pigments are an industrially relevant cellulose-based alternative to current products that are either micro-polluting (for example, non-biodegradable microplastic glitters) or based on carcinogenic, unsustainable or unethically sourced compounds (for example, titania or mica).


Subject(s)
Cellulose , Nanoparticles , Nanoparticles/chemistry , Plastics , Solvents , Water/chemistry
9.
New Phytol ; 237(2): 643-655, 2023 01.
Article in English | MEDLINE | ID: mdl-36229924

ABSTRACT

Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including in Viburnum tinus where the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genus Viburnum. We obtained fresh and herbarium fruit material from 30 Viburnum species spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance in Viburnum dentatum, and describe the evolution of cell wall architecture across Viburnum. We identify at least two (possibly three) origins of blue fruit color in Viburnum in species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light. Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.


Subject(s)
Adoxaceae , Viburnum , Animals , Fruit , Color , Lipids/analysis
10.
Nature ; 550(7677): 469-474, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045384

ABSTRACT

Diverse forms of nanoscale architecture generate structural colour and perform signalling functions within and between species. Structural colour is the result of the interference of light from approximately regular periodic structures; some structural disorder is, however, inevitable in biological organisms. Is this disorder functional and subject to evolutionary selection, or is it simply an unavoidable outcome of biological developmental processes? Here we show that disordered nanostructures enable flowers to produce visual signals that are salient to bees. These disordered nanostructures (identified in most major lineages of angiosperms) have distinct anatomies but convergent optical properties; they all produce angle-dependent scattered light, predominantly at short wavelengths (ultraviolet and blue). We manufactured artificial flowers with nanoscale structures that possessed tailored levels of disorder in order to investigate how foraging bumblebees respond to this optical effect. We conclude that floral nanostructures have evolved, on multiple independent occasions, an effective degree of relative spatial disorder that generates a photonic signature that is highly salient to insect pollinators.


Subject(s)
Bees/physiology , Color , Flowers/anatomy & histology , Light , Nanostructures/chemistry , Pollination/physiology , Animals , Magnoliopsida/anatomy & histology , Phylogeny , Surface Properties
11.
Proc Natl Acad Sci U S A ; 117(38): 23345-23349, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900921

ABSTRACT

Living organisms have developed a wide range of appearances from iridescent to matte textures. Interestingly, angular-independent structural colors, where isotropy in the scattering structure is present, only produce coloration in the blue wavelength region of the visible spectrum. One might, therefore, wonder if such observation is a limitation of the architecture of the palette of materials available in nature. Here, by exploiting numerical modeling, we discuss the origin of isotropic structural colors without restriction to a specific light scattering regime. We show that high color purity and color saturation cannot be reached in isotropic short-range order structures for red hues. This conclusion holds even in the case of advanced scatterer morphologies, such as core-shell particles or inverse photonic glasses-explaining recent experimental findings reporting very poor performances of visual appearance for such systems.

12.
New Phytol ; 235(3): 898-906, 2022 08.
Article in English | MEDLINE | ID: mdl-35590489

ABSTRACT

The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits of Lantana strigocamara and compare it with a similar structure in Viburnum tinus fruits. We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure in L. strigocamara. We also examine the development of the structure during maturation. We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets of c.105 nm that form a plate-like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers. Lantana strigocamara is the second origin of a lipid-based photonic structure, convergently evolved with the structure in Viburnum tinus. Chemical differences between the lipids in L. strigocamara and those of V. tinus suggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.


Subject(s)
Lantana , Viburnum , Color , Fruit/chemistry , Lantana/chemistry , Lipids/analysis , Viburnum/chemistry
13.
J Chem Phys ; 156(1): 014904, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998357

ABSTRACT

Cellulose nanocrystals (CNCs) are naturally sourced elongated nanocolloids that form cholesteric phases in water and apolar solvents. It is well accepted that CNCs are made of bundles of crystalline microfibrils clustered side-by-side, and there is growing evidence that each individual microfibril is twisted. Yet, the origin of the chiral interactions between CNCs remains unclear. In this work, CNCs are described with a simple model of chiral hard splinters, enabling the prediction of the pitch using density functional theory and Monte Carlo simulations. The predicted pitch P compares well with experimental observations in cotton-based CNC dispersions in apolar solvents using surfactants but also with qualitative trends caused by fractionation or tip sonication in aqueous suspensions. These results suggest that the bundle shape induces an entropy-driven chiral interaction between CNCs, which is the missing link in explaining how chirality is transferred from the molecular scale of cellulose chains to the cholesteric order.

14.
Angew Chem Int Ed Engl ; 61(22): e202117275, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35446459

ABSTRACT

Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.

15.
Angew Chem Int Ed Engl ; 61(34): e202206723, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35718747

ABSTRACT

Biodegradable photonic microspheres with structural colors are promising substitutes to polluting microbeads and toxic dyes. Here, amphiphilic polyester-block-poly(ethylene glycol) bottlebrush block copolymers (BBCPs) with polylactic acid or poly(ϵ-caprolactone) as the hydrophobic block are synthesized and used to fabricate eco-friendly photonic pigments. Molecular parameters of BBCPs, including rigidity and symmetry, are precisely tailored by variation of side chain lengths, which enables effective manipulation of interfacial tension (γ). Organized spontaneous emulsion mechanism is enabled only when γ falls in a suitable range (10.6-14.3 mN m-1 ), producing ordered water-in-oil-in-water multiple emulsions and ordered porous structures. Consequently, highly saturated and tunable structural colors are observed due to coherent light scattering from the porous structures. Such photonic materials are nontoxic as confirmed by careful safety tests using aquatic model organisms.


Subject(s)
Polyesters , Polyethylene Glycols , Emulsions , Hydrophobic and Hydrophilic Interactions , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Water/chemistry
16.
Angew Chem Int Ed Engl ; 61(34): e202206562, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35723924

ABSTRACT

To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.


Subject(s)
Photons , Plastics , Norbornanes , Polyethylene Glycols , Polymers
17.
New Phytol ; 230(6): 2327-2336, 2021 06.
Article in English | MEDLINE | ID: mdl-33720398

ABSTRACT

Helicoidally arranged layers of cellulose microfibrils in plant cell walls can produce strong and vivid coloration in a wide range of species. Despite its significance, the morphogenesis of cell walls, whether reflective or not, is not fully understood. Here we show that by optically monitoring the reflectance of Pollia japonica fruits during development we can directly map structural changes of the cell wall on a scale of tens of nanometres. Visible-light reflectance spectra from individual living cells were measured throughout the fruit maturation process and compared with numerical models. Our analysis reveals that periodic spacing of the helicoidal architecture remains unchanged throughout fruit development, suggesting that interactions in the cell-wall polysaccharides lead to a fixed twisting angle of cellulose helicoids in the cell wall. By contrast with conventional electron microscopy, which requires analysis of different fixed specimens at different stages of development, the noninvasive optical technique we present allowed us to directly monitor live structural changes in biological photonic systems as they develop. This method therefore is applicable to investigations of photonic tissues in other organisms.


Subject(s)
Commelinaceae , Fruit , Cell Wall , Cellulose , Color , Microfibrils
18.
Proc Natl Acad Sci U S A ; 115(11): 2652-2657, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29472451

ABSTRACT

Naturally occurring photonic structures are responsible for the bright and vivid coloration in a large variety of living organisms. Despite efforts to understand their biological functions, development, and complex optical response, little is known of the underlying genes involved in the development of these nanostructures in any domain of life. Here, we used Flavobacterium colonies as a model system to demonstrate that genes responsible for gliding motility, cell shape, the stringent response, and tRNA modification contribute to the optical appearance of the colony. By structural and optical analysis, we obtained a detailed correlation of how genetic modifications alter structural color in bacterial colonies. Understanding of genotype and phenotype relations in this system opens the way to genetic engineering of on-demand living optical materials, for use as paints and living sensors.


Subject(s)
Flavobacterium/chemistry , Flavobacterium/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Color , Flavobacterium/growth & development , Flavobacterium/metabolism , Genetic Engineering , Photons , Seaweed/microbiology
19.
Faraday Discuss ; 223(0): 207-215, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32756677

ABSTRACT

Plants have various strategies to protect themselves from harmful light. An example of such a protective mechanism is the growth of epicuticular nanostructures, such as a layer of hair or wax crystals. Most nanostructures are optimised to screen UV radiation, as UV light is particularly damaging for cellular tissue. We find that, contrary to the commonly found UV reflectance, the epicuticular wax crystals on Tradescantia leaves reflect strongly in the higher visible wavelength regime. Thus, they give the leaves a golden shine. We characterize the optical appearance of Tradescantia pallida 'purpurea' leaves by angularly resolved spectroscopy and compare the results to finite difference time domain simulations. We find that it is the disordered assembly of the wax platelets that is the crucial parameter to obtain the observed reflected intensity increase for higher wavelengths.


Subject(s)
Plant Leaves/chemistry , Tradescantia/chemistry , Nanostructures/chemistry , Refractometry , Spectrum Analysis/methods , Ultraviolet Rays
20.
Nano Lett ; 19(9): 6299-6307, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31419143

ABSTRACT

Many potential applications of monolayer transition metal dichalcogenides (TMDs) require both high photoluminescence (PL) yield and high electrical mobilities. However, the PL yield of as prepared TMD monolayers is low and believed to be limited by defect sites and uncontrolled doping. This has led to a large effort to develop chemical passivation methods to improve PL and mobilities. The most successful of these treatments is based on the nonoxidizing organic "superacid" bis(trifluoromethane)sulfonimide (TFSI) which has been shown to yield bright monolayers of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) but with trap-limited PL dynamics and no significant improvements in field effect mobilities. Here, using steady-state and time-resolved PL microscopy we demonstrate that treatment of WS2 monolayers with oleic acid (OA) can greatly enhance the PL yield, resulting in bright neutral exciton emission comparable to TFSI treated monolayers. At high excitation densities, the OA treatment allows for bright trion emission, which has not been demonstrated with previous chemical treatments. We show that unlike the TFSI treatment, the OA yields PL dynamics that are largely trap free. In addition, field effect transistors show an increase in mobilities with the OA treatment. These results suggest that OA serves to passivate defect sites in the WS2 monolayers in a manner akin to the passivation of colloidal quantum dots with OA ligands. Our results open up a new pathway to passivate and tune defects in monolayer TMDs using simple "wet" chemistry techniques, allowing for trap-free electronic properties and bright neutral exciton and trion emission.

SELECTION OF CITATIONS
SEARCH DETAIL