Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Pediatr Gastroenterol Nutr ; 73(3): 408-414, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34139746

ABSTRACT

OBJECTIVES: Human milk oligosaccharides (HMOs) impact the intestinal microbiota by increasing beneficial bacteria in infants and adults, and are safe and well tolerated in these age groups. Effects on intestinal microbiota, safety, and digestive tolerance in children have not been, however, assessed. The aims of this trial were to evaluate if HMOs are able to specifically modulate the intestinal microbiota in children, and to assess safety and digestive tolerance. METHODS: In this randomized, double-blinded, placebo-controlled trial, 75 children with overweight (including obesity) ages 6 to 12 years were randomized to receive 2'-fucosyllactose (2'FL), a mix of 2'FL and lacto-N-neotetraose (Mix), or a glucose placebo orally administrated once per day for 8 weeks. RESULTS: The relative abundance of bifidobacteria increased significantly after 4 (P < 0.001) and 8 (P = 0.025) weeks of intervention in the 2'FL-group and after 4 weeks (P = 0.033) in the Mix-group, whereas no change was observed in the placebo group. Compared with placebo, the 2'FL-group had a significant increase in bifidobacteria abundance after 4 weeks (P < 0.001) and 8 weeks (P = 0.010) and the Mix-group showed a tendency to increased bifidobacteria abundance after 4 (P = 0.071) and 8 weeks (P = 0.071). Bifidobacterium adolescentis drove the bifidogenic effect in the 2 groups. Biochemical markers indicated no safety concerns, and the products did not induce digestive tolerance issues as assessed by Gastrointestinal Symptoms Rating Scale and Bristol Stool Form Scale. CONCLUSIONS: Both 2'FL and the Mix beneficially modulate intestinal microbiota by increasing bifidobacteria. Furthermore, supplementation with either 2'FL alone or a Mix is safe and well tolerated in children.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Child , Feces , Humans , Infant , Milk, Human , Oligosaccharides , Overweight/therapy
2.
Appetite ; 80: 248-56, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24874564

ABSTRACT

BACKGROUND: Wholegrain rye has been associated with decreased hunger sensations. This may be partly mediated by colonic fermentation. Sustained consumption of fermentable components is known to change the gut microflora and may increase numbers of saccharolytic bacteria. OBJECTIVE: To investigate the effect of wholegrain rye consumption on appetite and colonic fermentation after a subsequent meal. METHODS: In a randomized, controlled, three-arm cross-over study, twelve healthy male subjects consumed three iso-caloric evening test meals. The test meals were based on white wheat bread (WBB), wholegrain rye kernel bread (RKB), or boiled rye kernels (RK). Breath hydrogen excretion and subjective appetite sensation were measured before and at 30 min intervals for 3 h after a standardized breakfast in the subsequent morning. After the 3 h, an ad libitum lunch meal was served to assess energy intake. In an in vitro study, RKB and RK were subjected to digestion and 24 h-fermentation in order to study SCFA production and growth of selected saccharolytic bacteria. RESULTS: The test meals did not differ in their effect on parameters of subjective appetite sensation the following day. Ad libitum energy intake at lunch was, however, reduced by 11% (P < 0.01) after RKB and 7% (P < 0.05) after RK compared with after WWB evening meal. Breath hydrogen excretion was significantly increased following RKB and RK evening meals compared with WWB (P < 0.01 and P < 0.05, respectively). Overall, RKB and RK were readily fermented in vitro and exhibited similar fermentation profiles, although total SCFA production was higher for RK compared with RKB (P < 0.001). In vitro fermentation of RKB and RK both increased the relative quantities of Bifidobacterium and decreased Bacteroides compared with inoculum (P < 0.001). The C. coccoides group was reduced after RKB (P < 0.001). CONCLUSION: Consumption of wholegrain rye products reduced subsequent ad libitum energy intake in young healthy men, possibly mediated by mechanisms related to colonic fermentation.


Subject(s)
Appetite/physiology , Fermentation , Meals , Secale , Adult , Bacteroides/isolation & purification , Bifidobacterium/isolation & purification , Body Mass Index , Bread , Cross-Over Studies , Dietary Carbohydrates/administration & dosage , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Energy Intake , Healthy Volunteers , Humans , Hunger , Male , Triticum , Young Adult
3.
Anaerobe ; 28: 68-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24905430

ABSTRACT

Prebiotic oligosaccharides are defined by their selective stimulation of growth and/or activity of bacteria in the digestive system in ways claimed to be beneficial for health. However, apart from the short chain fatty acids, little is known about bacterial metabolites created by fermentation of prebiotics, and the significance of the size of the oligosaccharides remains largely unstudied. By in vitro fermentations in human fecal microbial communities (derived from six different individuals), we studied the effects of high-mass (HA, >1 kDa), low-mass (LA, <1 kDa) and mixed (BA) sugar beet arabino-oligosaccharides (AOS) as carbohydrate sources. Fructo-oligosaccharides (FOS) were included as reference. The changes in bacterial communities and the metabolites produced in response to incubation with the different carbohydrates were analyzed by quantitative PCR (qPCR) and Liquid Chromatography-Mass Spectrometry (LC-MS), respectively. All tested carbohydrate sources resulted in a significant increase of Bifidobacterium spp. between 1.79 fold (HA) and 1.64 fold (FOS) in the microbial populations after fermentation, and LC-MS analysis suggested that the bifidobacteria contributed to decomposition of the arabino-oligosaccharide structures, most pronounced in the HA fraction, resulting in release of the essential amino acid phenylalanine. Abundance of Lactobacillus spp. correlated with the presence of a compound, most likely a flavonoid, indicating that lactobacilli contribute to release of such health-promoting substances from plant structures. Additionally, the combination of qPCR and LC-MS revealed a number of other putative interactions between intestinal microbes and the oligosaccharides, which contributes to the understanding of the mechanisms behind prebiotic impact on human health.


Subject(s)
Bacteria/drug effects , Gastrointestinal Tract/microbiology , Metabolome , Microbiota/drug effects , Oligosaccharides/metabolism , Phylogeny , Prebiotics , Adult , Bacteria/genetics , Bacteria/metabolism , Chromatography, Liquid , Female , Fermentation , Humans , Male , Mass Spectrometry , Middle Aged , Molecular Weight , Oligosaccharides/chemistry , Real-Time Polymerase Chain Reaction
4.
Appl Environ Microbiol ; 77(23): 8336-44, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21984234

ABSTRACT

The potential prebiotic properties of arabino-oligosaccharides (AOS) derived from sugar beet pulp was studied using mixed cultures of human fecal bacteria from patients with ulcerative colitis (UC), in remission or with active disease, and in healthy controls. These results were compared to those for fructo-oligosaccharides (FOS), which are known to have a prebiotic effect. Fermentation studies were carried out using a small-scale static batch system, and changes in the fecal microbial communities and metabolites were monitored after 24 h by quantitative real-time PCR and short-chain fatty acid analysis. With a few minor exceptions, AOS affected the communities similarly to what was seen for FOS. Quantitative real-time PCR revealed that Bifidobacterium spp. and Lactobacillus spp. were selectively increased after fermentation of AOS or FOS by fecal microbiota derived from UC patients. The stimulation of growth of Lactobacillus spp. and Bifidobacterium spp. was accompanied by a high production of acetate and hence a decrease of pH. The fermentation of AOS may help improve the inflammatory conditions in UC patients through stimulation of bacteria eliciting anti-inflammatory responses and through production of acetate. AOS may therefore represent a new prebiotic candidate for reduction of the risk of flare-ups in UC patients. However, human trials are needed to confirm a health-promoting effect.


Subject(s)
Beta vulgaris/chemistry , Bifidobacterium/growth & development , Biodiversity , Colitis, Ulcerative/microbiology , Feces/microbiology , Lactobacillus/growth & development , Oligosaccharides/metabolism , Acetates/metabolism , Bifidobacterium/isolation & purification , Bifidobacterium/metabolism , Fermentation , Humans , Hydrogen-Ion Concentration , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Prebiotics , Real-Time Polymerase Chain Reaction
5.
Pathogens ; 10(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34451391

ABSTRACT

Clostridioides difficile (formerly Clostridium difficile) infection (CDI) is one of the most common hospital-acquired infections, which is often triggered by a dysbiosed indigenous gut microbiota (e.g., upon antibiotic therapy). Symptoms can be as severe as life-threatening colitis. The current study assessed the antipathogenic potential of human milk oligosaccharides (HMOs), i.e., 2'-O-fucosyllactose (2'FL), lacto-N-neotetraose (LNnT), and a combination thereof (MIX), against C. difficile ATCC 9689 using in vitro gut models that allowed the evaluation of both direct and, upon microbiota modulation, indirect effects. During a first 48 h fecal batch study, dysbiosis and CDI were induced by dilution of the fecal inoculum. For each of the three donors tested, C. difficile levels strongly decreased (with >4 log CFU/mL) upon treatment with 2'FL, LNnT and MIX versus untreated blanks, coinciding with increased acetate/Bifidobacteriaceae levels. Interindividual differences among donors at an intermediate time point suggested that the antimicrobial effect was microbiota-mediated rather than being a direct effect of the HMOs. During a subsequent 11 week study with the PathogutTM model (specific application of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)), dysbiosis and CDI were induced by clindamycin (CLI) treatment. Vancomycin (VNC) treatment cured CDI, but the further dysbiosis of the indigenous microbiota likely contributed to CDI recurrence. Upon co-supplementation with VNC, both 2'FL and MIX boosted microbial activity (acetate and to lesser extent propionate/butyrate). Moreover, 2'FL avoided CDI recurrence, potentially because of increased secondary bile acid production. Overall, while not elucidating the exact antipathogenic mechanisms-of-action, the current study highlights the potential of HMOs to combat CDI recurrence, help the gut microbial community recover after antibiotic treatment, and hence counteract the adverse effects of antibiotic therapies.

6.
Nutrients ; 13(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34444897

ABSTRACT

Human milk oligosaccharides (HMOs) are non-digestible and structurally diverse complex carbohydrates that are highly abundant in human milk. To date, more than 200 different HMO structures have been identified. Their concentrations in human milk vary according to various factors such as lactation period, mother's genetic secretor status, and length of gestation (term or preterm). The objective of this review is to assess and rank HMO concentrations from healthy mothers throughout lactation at a global level. To this aim, published data from pooled (secretor and non-secretor) human milk samples were used. When samples were reported as secretor or non-secretor, means were converted to a pooled level, using the reported mean of approximately 80/20% secretor/non-secretor frequency in the global population. This approach provides an estimate of HMO concentrations in the milk of an average, healthy mother independent of secretor status. Mean concentrations of HMOs were extracted and categorized by pre-defined lactation periods of colostrum (0-5 days), transitional milk (6-14 days), mature milk (15-90 days), and late milk (>90 days). Further categorizations were made by gestational length at birth, mother's ethnicity, and analytical methodology. Data were excluded if they were from preterm milk, unknown sample size and mothers with any known disease status. A total of 57 peer-reviewed articles reporting individual HMO concentrations published between 1996 and 2020 were included in the review. Pooled HMO means reported from 31 countries were analyzed. In addition to individual HMO concentrations, 12 articles reporting total HMO concentrations were also analyzed as a basis for relative HMO abundance. Total HMOs were found as 17.7 g/L in colostrum, 13.3 g/L in transitional milk, and 11.3 g/L in mature milk. The results show that HMO concentrations differ largely for each individual HMO and vary with lactation stages. For instance, while 2'-FL significantly decreased from colostrum (3.18 g/L ± 0.9) to late milk (1.64 g/L ± 0.67), 3-FL showed a significant increase from colostrum (0.37 g/L ± 0.1) to late milk (0.92 g/L ± 0.5). Although pooled human milk contains a diverse HMO profile with more than 200 structures identified, the top 10 individual HMOs make up over 70% of total HMO concentration. In mature pooled human milk, the top 15 HMOs in decreasing order of magnitude are 2'-FL, LNDFH-I (DFLNT), LNFP-I, LNFP-II, LNT, 3-FL, 6'-SL, DSLNT, LNnT, DFL (LDFT), FDS-LNH, LNFP-III, 3'-SL, LST c, and TF-LNH.


Subject(s)
Lactation/metabolism , Maternal Nutritional Physiological Phenomena , Milk, Human/chemistry , Oligosaccharides/analysis , Colostrum/chemistry , Female , Humans , Pregnancy
7.
Nutrients ; 12(9)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933181

ABSTRACT

Human milk oligosaccharides (HMOs) shape the gut microbiota in infants by selectively stimulating the growth of bifidobacteria. Here, we investigated the impact of HMOs on adult gut microbiota and gut barrier function using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), Caco2 cell lines, and human intestinal gut organoid-on-chips. We showed that fermentation of 2'-O-fucosyllactose (2'FL), lacto-N-neotetraose (LNnT), and combinations thereof (MIX) led to an increase of bifidobacteria, accompanied by an increase of short chain fatty acid (SCFA), in particular butyrate with 2'FL. A significant reduction in paracellular permeability of FITC-dextran probe was observed using Caco2 cell monolayers with fermented 2'FL and MIX, which was accompanied by an increase in claudin-8 gene expression as shown by qPCR, and a reduction in IL-6 as determined by multiplex ELISA. Using gut-on-chips generated from human organoids derived from proximal, transverse, and distal colon biopsies (Colon Intestine Chips), we showed that claudin-5 was significantly upregulated across all three gut-on-chips following treatment with fermented 2'FL under microfluidic conditions. Taken together, these data show that, in addition to their bifidogenic activity, HMOs have the capacity to modulate immune function and the gut barrier, supporting the potential of HMOs to provide health benefits in adults.


Subject(s)
Bifidobacterium/drug effects , Colon/drug effects , Gastrointestinal Microbiome/drug effects , Milk, Human/chemistry , Oligosaccharides/pharmacology , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Butyric Acid/metabolism , Caco-2 Cells , Claudins/metabolism , Colon/metabolism , Colon/microbiology , Enzyme-Linked Immunosorbent Assay , Fermentation , Humans , Immunity , Infant , Interleukin-6/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Trisaccharides/pharmacology , Up-Regulation
8.
Curr Opin Biotechnol ; 56: 130-137, 2019 04.
Article in English | MEDLINE | ID: mdl-30502637

ABSTRACT

Human Milk Oligosaccharides (HMOs) constitute an important, highly abundant part of mothers' milk delivering many health benefits to the neonate. Until recently, limited availability of HMOs has prevented their use in infant nutrition and impeded research into their biological effects. The shift from chemical synthesis to biotechnological manufacturing has made them accessible in quantities and at prices that are within reach for commercial applications, including infant formula. It accelerated the studies in the field of pre-clinical and clinical HMO biology. This review gives a short overview of HMO manufacturing from the design and optimization of the microbial cell factory and the production of HMOs in the industrial fermentation process to the purification in the downstream process necessary to obtain a final product. Moreover, the transition from chemistry to biotechnology and the current regulatory landscape and commercialization progress are briefly reviewed.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Cell Engineering/methods , Milk, Human/chemistry , Oligosaccharides/biosynthesis , Humans , Metabolic Networks and Pathways
9.
Sci Rep ; 3: 1110, 2013.
Article in English | MEDLINE | ID: mdl-23346367

ABSTRACT

We compared fecal microbial communities derived either from Ulcerative Colitis (UC) patients in remission (n = 4) or in relapse (n = 4), or from healthy subjects (n = 4). These communities were used for inoculation of a dynamic in vitro gut model, which contained integrated mucin-covered microcosms. We found that the microbiota of the 'mucus' largely differed from that of the 'lumen'. This was partly due to decreased mucus-associated populations of lactic acid producing bacterial populations (LAB), as LAB originating from UC patients had a significantly decreased capacity to colonize the mucin-covered microcosms as compared to those originating from healthy subjects. We found significant differences between the metabolomes of UC patients in relapse and remission, respectively, while the metabolome of patients in remission resembled that of healthy subjects. These novel findings constitute an important contribution to the understanding of the complex etiology of UC.


Subject(s)
Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Intestinal Mucosa/microbiology , Metagenome/physiology , Bacteria/genetics , Bacteria/metabolism , Colitis, Ulcerative/metabolism , Feces/microbiology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Intestinal Mucosa/metabolism , Lactic Acid/metabolism , Metabolome/genetics , Mucins/genetics , Mucins/metabolism , Mucus/microbiology
10.
FEMS Microbiol Ecol ; 79(3): 685-96, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22092917

ABSTRACT

The mucus layer in the colon, acting as a barrier to prevent invasion of pathogens, is thinner and discontinuous in patients with ulcerative colitis (UC). A recent developed in vitro dynamic gut model, the M-SHIME, was used to compare long-term colonization of the mucin layer by the microbiota from six healthy volunteers (HV) and six UC patients and thus distinguish the mucin adhered from the luminal microbiota. Although under the same nutritional conditions, short-chain fatty acid production by the luminal communities from UC patients showed a tendency toward a lower butyrate production. A more in-depth community analysis of those microbial groups known to produce butyrate revealed that the diversity of the Clostridium coccoides/Eubacterium rectale and Clostridium leptum group, and counts of Faecalibacterium prausnitzii were lower in the luminal fractions of the UC samples. Counts of Roseburia spp. were lower in the mucosal fractions of the UC samples. qPCR analysis for butyryl-CoA:acetate CoA transferase, responsible for butyrate production, displayed a lower abundance in both the luminal and mucosal fractions of the UC samples. The M-SHIME model revealed depletion in butyrate producing microbial communities not restricted to the luminal but also in the mucosal samples from UC patients compared to HV.


Subject(s)
Clostridium/physiology , Colitis, Ulcerative/microbiology , Eubacterium/physiology , Mucins/metabolism , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Adult , Aged , Butyrates/metabolism , Clostridium/growth & development , Coenzyme A-Transferases/genetics , Coenzyme A-Transferases/metabolism , Colitis, Ulcerative/metabolism , Eubacterium/growth & development , Fatty Acids, Volatile/metabolism , Female , Gastrointestinal Tract/microbiology , Humans , Intestinal Mucosa/microbiology , Male , Middle Aged , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL