ABSTRACT
OBJECTIVE: To investigate whether treatment with anti-vascular endothelial growth factor (VEGF)-neutralizing antibodies can reduce pain and voiding dysfunction in the cyclophosphamide (CYP) cystitis model of bladder pain in mice. MATERIALS AND METHODS: Adult female mice received anti-VEGF-neutralizing antibodies (10 mg/kg i.p. B20-4.1.1 VEGF mAb) or saline (control) pre-treatment, followed by CYP (150 mg/kg i.p.) to induce acute cystitis. Pelvic nociceptive responses were assessed by applying von Frey filaments to the pelvic area. Spontaneous micturition was assessed using the void spot assay. RESULTS: Systemic anti-VEGF-neutralizing antibody treatment significantly reduced the pelvic nociceptive response to CYP cystitis compared with control (saline). In the anti-VEGF pre-treatment group, there was a significant increase in pelvic hypersensitivity, measured by the area under the curve (AUC) using von Frey filaments at 5 h post-CYP administration (P = 0.004); however, by 48 h and 96 h post-CYP administration, pelvic hypersensitivity had reduced by 54% and 47%, respectively, compared with the 5 h post-CYP administration time point, and were no longer significantly different from baseline (P = 0.22 and 0.17, respectively). There was no difference in urinary frequency and mean voided volume between the two pre-treatment groups. CONCLUSION: Systemic blockade of VEGF signalling with anti-VEGF-neutralizing antibodies was effective in reducing pelvic/bladder pain in the CYP cystitis model of bladder pain. Our data support the further investigation of the use of anti-VEGF antibodies to manage bladder pain or visceral pain.
Subject(s)
Cyclophosphamide/adverse effects , Cystitis/physiopathology , Pain/drug therapy , Pelvic Pain/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Cystitis/chemically induced , Disease Models, Animal , Female , Follow-Up Studies , Mice , Mice, Inbred C57BL , Pain/etiology , Pain/physiopathology , Pain Measurement , Pelvic Pain/etiology , Pelvic Pain/physiopathology , Random Allocation , Reference Values , Severity of Illness Index , Treatment Outcome , Urination , Vascular Endothelial Growth Factor A/pharmacologyABSTRACT
The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions.