Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Immunol ; 21(4): 381-387, 2020 04.
Article in English | MEDLINE | ID: mdl-32205881

ABSTRACT

Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties.


Subject(s)
Inflammation/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Epithelial Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Polyubiquitin/metabolism , Protein Binding/physiology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Zinc Fingers/physiology
2.
Eur J Immunol ; 53(12): e2350503, 2023 12.
Article in English | MEDLINE | ID: mdl-37735713

ABSTRACT

The availability of genetically modified mice has facilitated the study of mammalian T cells. No model has yet been developed to study these cells in chickens, an important livestock species with a high availability of γδ T cells. To investigate the role of γδ and αß T cell populations in birds, we generated chickens lacking these T cell populations. This was achieved by genomic deletion of the constant region of the T cell receptor γ or ß chain, leading to a complete loss of either γδ or αß T cells. Our results show that a deletion of αß T cells but not γδ T cells resulted in a severe phenotype in KO chickens. The αß T cell KO chickens exhibited granulomas associated with inflammation of the spleen and the proventriculus. Immunophenotyping of αß T cell KO chickens revealed a significant increase in monocytes and expectedly the absence of CD4+ T cells including FoxP3+ regulatory T cells. Surprisingly there was no increase of γδ T cells. In addition, we observed a significant decrease in immunoglobulins, B lymphocytes, and changes in the bursa morphology. Our data reveal the consequences of T cell knockouts in chickens and provide new insights into their function in vertebrates.


Subject(s)
Chickens , Receptors, Antigen, T-Cell, alpha-beta , Animals , Mice , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Phenotype , B-Lymphocytes , Mammals
3.
EMBO Rep ; 22(5): e51573, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33780134

ABSTRACT

Fibroblasts are a major component of the microenvironment of most solid tumours. Recent research elucidated a large heterogeneity and plasticity of activated fibroblasts, indicating that their role in cancer initiation, growth and metastasis is complex and context-dependent. Here, we performed genome-wide expression analysis comparing fibroblasts in normal, inflammatory and tumour-associated skin. Cancer-associated fibroblasts (CAFs) exhibit a fibrotic gene signature in wound-induced tumours, demonstrating persistent extracellular matrix (ECM) remodelling within these tumours. A top upregulated gene in mouse CAFs encodes for PRSS35, a protease capable of collagen remodelling. In human skin, we observed PRSS35 expression uniquely in the stroma of high-grade squamous cell carcinomas. Ablation of PRSS35 in mouse models of wound- or chemically-induced tumorigenesis resulted in aberrant collagen composition in the ECM and increased tumour incidence. Our results indicate that fibrotic enzymes expressed by CAFs can regulate squamous tumour initiation by remodelling the ECM.


Subject(s)
Extracellular Matrix , Fibroblasts , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Fibrosis , Mice , Skin , Tumor Microenvironment/genetics
4.
Pharmaceutics ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36678656

ABSTRACT

Efficient wound repair is crucial for mammalian survival. Healing of skin wounds is severely hampered in diabetic patients, resulting in chronic non-healing wounds that are difficult to treat. High-mobility group box 1 (HMGB1) is an important signaling molecule that is released during wounding, thereby delaying regenerative responses in the skin. Here, we show that dissolving glycyrrhizin, a potent HMGB1 inhibitor, in water results in the formation of a hydrogel with remarkable rheological properties. We demonstrate that these glycyrrhizin-based hydrogels accelerate cutaneous wound closure in normoglycemic and diabetic mice by influencing keratinocyte migration. To facilitate topical application of glycyrrhizin hydrogels on cutaneous wounds, several concentrations of glycyrrhizinic acid in water were tested for their rheological, structural, and biological properties. By varying the concentration of glycyrrhizin, these hydrogel properties can be readily tuned, enabling customized wound care.

5.
Nat Commun ; 12(1): 5913, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625556

ABSTRACT

OTULIN is a deubiquitinase that specifically cleaves linear ubiquitin chains. Here we demonstrate that the ablation of Otulin selectively in keratinocytes causes inflammatory skin lesions that develop into verrucous carcinomas. Genetic deletion of Tnfr1, knockin expression of kinase-inactive Ripk1 or keratinocyte-specific deletion of Fadd and Mlkl completely rescues mice with OTULIN deficiency from dermatitis and tumorigenesis, thereby identifying keratinocyte cell death as the driving force for inflammation. Single-cell RNA-sequencing comparing non-lesional and lesional skin reveals changes in epidermal stem cell identity in OTULIN-deficient keratinocytes prior to substantial immune cell infiltration. Keratinocytes lacking OTULIN display a type-1 interferon and IL-1ß response signature, and genetic or pharmacologic inhibition of these cytokines partially inhibits skin inflammation. Finally, expression of a hypomorphic mutant Otulin allele, previously shown to cause OTULIN-related autoinflammatory syndrome in humans, induces a similar inflammatory phenotype, thus supporting the importance of OTULIN for restraining skin inflammation and maintaining immune homeostasis.


Subject(s)
Endopeptidases/metabolism , Keratinocytes/metabolism , Skin/metabolism , Animals , Cell Death/genetics , Cytokines/metabolism , Endopeptidases/genetics , Fas-Associated Death Domain Protein , Gene Knock-In Techniques , Homeostasis , Inflammation/pathology , Interferon Type I , Interleukin-1beta , Mice , Necroptosis , Peptide Fragments , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Skin/pathology , Stem Cells/metabolism , Systems Analysis , Ubiquitin/metabolism
6.
Cell Rep ; 36(12): 109748, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34551300

ABSTRACT

Obesity-induced inflammation is a major driving force in the development of insulin resistance, type 2 diabetes (T2D), and related metabolic disorders. During obesity, macrophages accumulate in the visceral adipose tissue, creating a low-grade inflammatory environment. Nuclear factor κB (NF-κB) signaling is a central coordinator of inflammatory responses and is tightly regulated by the anti-inflammatory protein A20. Here, we find that myeloid-specific A20-deficient mice are protected from diet-induced obesity and insulin resistance despite an inflammatory environment in their metabolic tissues. Macrophages lacking A20 show impaired mitochondrial respiratory function and metabolize more palmitate both in vitro and in vivo. We hypothesize that A20-deficient macrophages rely more on palmitate oxidation and metabolize the fat present in the diet, resulting in a lean phenotype and protection from metabolic disease. These findings reveal a role for A20 in regulating macrophage immunometabolism.


Subject(s)
Fatty Acids/metabolism , Obesity/pathology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adipose Tissue, White/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Insulin Resistance , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Obesity/metabolism , Oxygen Consumption , Palmitates/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/deficiency , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
7.
Cell Rep ; 30(7): 2237-2247.e6, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075762

ABSTRACT

Inflammatory signaling pathways are tightly regulated to avoid chronic inflammation and the development of disease. OTULIN is a deubiquitinating enzyme that controls inflammation by cleaving linear ubiquitin chains generated by the linear ubiquitin chain assembly complex. Here, we show that ablation of OTULIN in liver parenchymal cells in mice causes severe liver disease which is characterized by liver inflammation, hepatocyte apoptosis, and compensatory hepatocyte proliferation, leading to steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). Genetic ablation of Fas-associated death domain (FADD) completely rescues and knockin expression of kinase inactive receptor-interacting protein kinase 1 (RIPK1) significantly protects mice from developing liver disease, demonstrating that apoptosis of OTULIN-deficient hepatocytes triggers disease pathogenesis in this model. Finally, we demonstrate that type I interferons contribute to disease in hepatocyte-specific OTULIN-deficient mice. Our study reveals the critical importance of OTULIN in protecting hepatocytes from death, thereby preventing the development of chronic liver inflammation and HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Endopeptidases/metabolism , Fas-Associated Death Domain Protein/antagonists & inhibitors , Hepatitis/metabolism , Liver Neoplasms/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Apoptosis/physiology , CHO Cells , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cricetulus , Fas-Associated Death Domain Protein/metabolism , Hepatitis/genetics , Hepatitis/pathology , Humans , Interferon Type I/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
8.
Nat Cancer ; 1(6): 620-634, 2020 06.
Article in English | MEDLINE | ID: mdl-35121975

ABSTRACT

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Subject(s)
Carcinoma , Microbiota , Animals , Carcinoma/metabolism , Colon/metabolism , Mice
9.
Nat Commun ; 10(1): 1834, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015422

ABSTRACT

Prevention of inflammatory bowel disease (IBD) relies on tight control of inflammatory, cell death and autophagic mechanisms, but how these pathways are integrated at the molecular level is still unclear. Here we show that the anti-inflammatory protein A20 and the critical autophagic mediator Atg16l1 physically interact and synergize to regulate the stability of the intestinal epithelial barrier. A proteomic screen using the WD40 domain of ATG16L1 (WDD) identified A20 as a WDD-interacting protein. Loss of A20 and Atg16l1 in mouse intestinal epithelium induces spontaneous IBD-like pathology, as characterized by severe inflammation and increased intestinal epithelial cell death in both small and large intestine. Mechanistically, absence of A20 promotes Atg16l1 accumulation, while elimination of Atg16l1 or expression of WDD-deficient Atg16l1 stabilizes A20. Collectively our data show that A20 and Atg16l1 cooperatively control intestinal homeostasis by acting at the intersection of inflammatory, autophagy and cell death pathways.


Subject(s)
Carrier Proteins/metabolism , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , WD40 Repeats/genetics , Animals , Autophagy/immunology , Autophagy-Related Proteins , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Line, Tumor , Disease Models, Animal , Endoscopy , Female , Homeostasis/immunology , Humans , Inflammatory Bowel Diseases/diagnostic imaging , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/cytology , Intestinal Mucosa/diagnostic imaging , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding/immunology , Proteomics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , WD40 Repeats/immunology
10.
Cell Rep ; 29(9): 2689-2701.e4, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31775038

ABSTRACT

Regenerative responses predispose tissues to tumor formation by largely unknown mechanisms. High-mobility group box 1 (HMGB1) is a danger-associated molecular pattern contributing to inflammatory pathologies. We show that HMGB1 derived from keratinocytes, but not myeloid cells, delays cutaneous wound healing and drives tumor formation. In wounds of mice lacking HMGB1 selectively in keratinocytes, a marked reduction in neutrophil extracellular trap (NET) formation is observed. Pharmacological targeting of HMGB1 or NETs prevents skin tumorigenesis and accelerates wound regeneration. HMGB1-dependent NET formation and skin tumorigenesis is orchestrated by tumor necrosis factor (TNF) and requires RIPK1 kinase activity. NETs are present in the microenvironment of keratinocyte-derived tumors in mice and lesional and tumor skin of patients suffering from recessive dystrophic epidermolysis bullosa, a disease in which skin blistering predisposes to tumorigenesis. We conclude that tumorigenicity of the wound microenvironment depends on epithelial-derived HMGB1 regulating NET formation, thereby establishing a mechanism linking reparative inflammation to tumor initiation.


Subject(s)
Extracellular Traps/metabolism , Neutrophils/metabolism , Skin/pathology , HMGB1 Protein/metabolism , Humans , Tumor Microenvironment , Wound Healing
11.
Nat Commun ; 9(1): 2036, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29789522

ABSTRACT

Microglia, the mononuclear phagocytes of the central nervous system (CNS), are important for the maintenance of CNS homeostasis, but also critically contribute to CNS pathology. Here we demonstrate that the nuclear factor kappa B (NF-κB) regulatory protein A20 is crucial in regulating microglia activation during CNS homeostasis and pathology. In mice, deletion of A20 in microglia increases microglial cell number and affects microglial regulation of neuronal synaptic function. Administration of a sublethal dose of lipopolysaccharide induces massive microglia activation, neuroinflammation, and lethality in mice with microglia-confined A20 deficiency. Microglia A20 deficiency also exacerbates multiple sclerosis (MS)-like disease, due to hyperactivation of the Nlrp3 inflammasome leading to enhanced interleukin-1ß secretion and CNS inflammation. Finally, we confirm a Nlrp3 inflammasome signature and IL-1ß expression in brain and cerebrospinal fluid from MS patients. Collectively, these data reveal a critical role for A20 in the control of microglia activation and neuroinflammation.


Subject(s)
Inflammasomes/immunology , Microglia/immunology , Multiple Sclerosis/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Adult , Aged , Aged, 80 and over , Animals , Brain/immunology , Brain/pathology , Disease Models, Animal , Female , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/immunology , Male , Mice , Microglia/pathology , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Signal Transduction/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/immunology
SELECTION OF CITATIONS
SEARCH DETAIL