Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
Cell ; 184(5): 1135-1136, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33667366

ABSTRACT

Understanding what regulates CD8+ T cell responses is key to effectively harnessing these cells in human disease. In this issue of Cell, Huang et al. and Chen et al. use in vivo CRISPR screens to discover novel regulators of CD8+ T cell immunity to engineer a more efficacious response against cancer and infections.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Humans , Neoplasms/genetics , T-Lymphocytes
2.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216540

ABSTRACT

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Subject(s)
Cell Lineage , Polyamines/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Polarity/drug effects , Cell Proliferation/drug effects , Chromatin/metabolism , Citric Acid Cycle/drug effects , Colitis/immunology , Colitis/pathology , Cytokines/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epigenome , Histones/metabolism , Inflammation/immunology , Inflammation/pathology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/metabolism , Lysine/analogs & derivatives , Lysine/metabolism , Mice , Mice, Inbred C57BL , Ornithine Decarboxylase/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Transcription Factors/metabolism
3.
Nat Immunol ; 24(3): 516-530, 2023 03.
Article in English | MEDLINE | ID: mdl-36732424

ABSTRACT

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Phosphatidylinositols/metabolism , Signal Transduction , Type C Phospholipases/metabolism , CD8-Positive T-Lymphocytes/metabolism
4.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34717796

ABSTRACT

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Subject(s)
Amino Acid Transport Systems/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Regulation , Amino Acid Transport Systems/metabolism , Autoimmunity , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Energy Metabolism , Humans , Immunity , Signal Transduction
5.
Nature ; 610(7932): 555-561, 2022 10.
Article in English | MEDLINE | ID: mdl-36171294

ABSTRACT

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Subject(s)
AMP-Activated Protein Kinases , Mitochondria , Th17 Cells , Glutamine/metabolism , Interleukin-17/metabolism , Mitochondria/metabolism , NAD/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Serine/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , AMP-Activated Protein Kinases/metabolism , Citric Acid Cycle , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
6.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566880

ABSTRACT

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Subject(s)
Cell Nucleus/drug effects , Dinoprostone/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Membrane Potential, Mitochondrial/physiology , Animals , Cell Nucleus/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Interleukin-4/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Nat Immunol ; 14(4): 372-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23475182

ABSTRACT

Intestinal Peyer's patches are essential lymphoid organs for the generation of T cell-dependent immunoglobulin A (IgA) for gut homeostasis. Through the use of interleukin 17 (IL-17) fate-reporter mice, we found here that endogenous cells of the TH17 subset of helper T cells in lymphoid organs of naive mice 'preferentially' homed to the intestines and were maintained independently of IL-23. In Peyer's patches, such TH17 cells acquired a follicular helper T cell (TFH cell) phenotype and induced the development of IgA-producing germinal center B cells. Mice deficient in TH17 cells failed to generate antigen-specific IgA responses, which provides evidence that TH17 cells are the crucial subset required for the production of high-affinity T cell-dependent IgA.


Subject(s)
Immunoglobulin A/immunology , Peyer's Patches/immunology , Th17 Cells/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Germinal Center/cytology , Germinal Center/immunology , Immunoglobulin A/biosynthesis , Immunoglobulin A, Secretory/immunology , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Interleukin-23/genetics , Interleukin-23/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Peyer's Patches/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161266

ABSTRACT

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fever/immunology , Mitochondria/metabolism , Protein Biosynthesis , Animals , Antineoplastic Agents/metabolism , CD8-Positive T-Lymphocytes/ultrastructure , Cytokines/biosynthesis , Glucose/metabolism , Leukemia, Myeloid/immunology , Leukemia, Myeloid/pathology , Leukemia, Myeloid/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/ultrastructure , Models, Biological , Temperature
9.
Gut ; 72(10): 1971-1984, 2023 10.
Article in English | MEDLINE | ID: mdl-37541771

ABSTRACT

OBJECTIVE: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.


Subject(s)
Hepatitis B, Chronic , Hepatitis C, Chronic , Hepatitis C , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Antiviral Agents/therapeutic use , Persistent Infection , Hepatitis C, Chronic/drug therapy , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/metabolism , Hepatitis C/drug therapy , Hepatitis Viruses , Hepatitis B virus
10.
J Cell Mol Med ; 27(20): 3053-3064, 2023 10.
Article in English | MEDLINE | ID: mdl-37654003

ABSTRACT

Mantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features. Antibodies against TAMs targeted CD47, a 'don't eat me' signal (DEMs) able to quench phagocytosis by TAMs within TME, with clinical effectiveness when combined with Rituximab in pretreated NHL. Recently, CD24 was found as valid DEMs in solid cancer. Since CD24 is expressed during B-cell differentiation, we investigated and identified consistent CD24 in MCL, CLL and primary human samples. Phagocytosis increased when M2-like macrophages were co-cultured with cancer cells, particularly in the case of paired DEMs blockade (i.e. anti-CD24 + anti-CD47) combined with Rituximab. Similarly, unstimulated CLL patients-derived NLCs provided increased phagocytosis when DEMs blockade occurred. Since high levels of CD24 were associated with worse survival in both MCL and CLL, anti-CD24-induced phagocytosis could be considered for future clinical use, particularly in association with other agents such as Rituximab.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Mantle-Cell , Adult , Humans , Rituximab/pharmacology , Rituximab/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , CD47 Antigen , Neoplasm Recurrence, Local , Phagocytosis , Tumor Microenvironment , CD24 Antigen
11.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003483

ABSTRACT

Cyclin-dependent kinase (CDK) 4/6 inhibitors have significantly improved progression-free survival in hormone-receptor-positive (HR+), human-epidermal-growth-factor-receptor-type-2-negative (HER2-) metastatic luminal breast cancer (mLBC). Several studies have shown that in patients with endocrine-sensitive or endocrine-resistant LBC, the addition of CDK4/6 inhibitors to endocrine therapy significantly prolongs progression-free survival. However, the percentage of patients who are unresponsive or refractory to these therapies is as high as 40%, and no reliable and reproducible biomarkers have been validated to select a priori responders or refractory patients. The selection of mutant clones in the target oncoprotein is the main cause of resistance. Other mechanisms such as oncogene amplification/overexpression or mutations in other pathways have been described in several models. In this study, we focused on palbociclib, a selective CDK4/6 inhibitor. We generated a human MCF-7 luminal breast cancer cell line that was able to survive and proliferate at different concentrations of palbociclib and also showed cross-resistance to abemaciclib. The resistant cell line was characterized via RNA sequencing and was found to strongly activate the epithelial-to-mesenchymal transition. Among the top deregulated genes, we found a dramatic downregulation of the CDK4 inhibitor CDKN2B and an upregulation of the TWIST1 transcription factor. TWIST1 was further validated as a target for the reversal of palbociclib resistance. This study provides new relevant information about the mechanisms of resistance to CDK4/6 inhibitors and suggests potential new markers for patients' follow-up care during treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Up-Regulation , Cyclin-Dependent Kinase 4 , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Progression-Free Survival , Cyclin-Dependent Kinase 6 , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
12.
EMBO J ; 36(1): 116-128, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27875245

ABSTRACT

The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr-/-) B cells proliferate less than AhR-sufficient (Ahr+/+) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr-/- B cells are outcompeted by Ahr+/+ cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency.


Subject(s)
B-Lymphocytes/physiology , Cell Proliferation , Receptors, Aryl Hydrocarbon/metabolism , Cyclins/metabolism , Cytochrome P-450 CYP1A1/biosynthesis , Gene Expression Profiling , Interleukin-4/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Aryl Hydrocarbon/deficiency , Transcription, Genetic
13.
Int J Obes (Lond) ; 45(2): 326-330, 2021 02.
Article in English | MEDLINE | ID: mdl-32873912

ABSTRACT

BACKGROUND: Bariatric surgery is a valuable therapeutic option in the treatment of obesity but the outcomes show a large subject-to-subject variability yet to be explained. Thyroid function may represent an involved factor and we have only few controversial data about its influence. SUBJECTS/METHODS: We retrospectively assessed using a longitudinal approach the relation between baseline TSH levels and short-term (6 and 12 months) weight loss in 387 euthyroid patients who underwent laparoscopic gastric banding (LAGB; n = 187) or sleeve gastrectomy (SG; n = 200). RESULTS: After LAGB, patients with low-normal TSH levels (0.40-1.40 mUI/L) had higher percent total weight loss, ∆BMI and percent excess weight loss when compared to patients with normal (1.41-2.48 mUI/L) and high-normal (2.49-4.00 mUI/L) TSH (p < 0.05). Conversely, no association was detected after SG (p = 0.17). The multivariable regression analysis showed that also baseline BMI (6-12 months) and HOMA2-IR (only at 6 months) were independently associated with the outcomes. CONCLUSIONS: TSH levels may influence the short-term weight loss response after LAGB. The lack of association after SG suggests that the influence of baseline endocrine and metabolic factors may not be relevant for procedures with greater and more immediate calorie intake restriction.


Subject(s)
Bariatric Surgery/adverse effects , Bariatric Surgery/methods , Gastrectomy/adverse effects , Gastrectomy/methods , Obesity/surgery , Thyrotropin/blood , Body Mass Index , Female , Humans , Laparoscopy , Longitudinal Studies , Male , Regression Analysis , Retrospective Studies , Treatment Outcome , Weight Loss
14.
Diabetes Metab Res Rev ; 37(3): e3389, 2021 03.
Article in English | MEDLINE | ID: mdl-32738094

ABSTRACT

AIMS: Hypothalamus-pituitary-adrenal (HPA) axis hyperactivity was suggested to be associated with the metabolic syndrome (MS), obesity and diabetes. The aim of this study was to test whether hypercortisolism was associated with altered glucose homeostasis and insulin resistance, hypertension and dyslipidemia in a homogeneous population of obese patients. MATERIALS/METHODS: In retrospective analysis of a set of data about obese patients attending the outpatient service of a single obesity centre between January 2013 and January 2020, 884 patients with BMI >30 kg/m2 were segregated in two subgroups: patients with urinary free cortisol (UFC) higher than normal (UFC+; n = 129) or within the normal range (UFC-; n = 755). RESULTS: The overall prevalence of UFC+ was 14.6% and double test positivity (morning cortisol >1.8 mcg/dL following overnight dexamethasone suppression test, ODST) was detected in 1.0% of patients. Prediabetes (OR 1.74; 95%CI 1.13-2.69; p = 0.012) and diabetes (OR 2.03; 95%CI 1.21-3.42; p = 0.008) were associated with higher risk of UFC+ when analysis was adjusted for confounding variables. Conversely, hypertension and dyslipidemia were not related to UFC+. Within the individuals with normal FPG and HbA1c, those with higher estimated insulin resistance (HOMA2-IR) maintained a higher risk of UFC+ (OR 2.84, 95%CI 1.06-7.63; p = 0.039) and this relationship was weakened only when the body fat percentage was included into the model. CONCLUSIONS: In obese patients, hypercortisolism was more frequent across the entire spectrum of altered glucose homeostasis including the very early stages; this relation could not be detected for the other criteria of the MS, as waist, hypertension and atherogenic dyslipidemia.


Subject(s)
Cushing Syndrome , Glucose , Homeostasis , Obesity , Bariatric Surgery , Cushing Syndrome/complications , Glucose/metabolism , Homeostasis/physiology , Humans , Obesity/physiopathology , Obesity/surgery , Retrospective Studies
15.
EMBO Rep ; 19(2): 351-367, 2018 02.
Article in English | MEDLINE | ID: mdl-29301856

ABSTRACT

Nucleolytic processing by nucleases can be a relevant mechanism to allow repair/restart of stalled replication forks. However, nuclease action needs to be controlled to prevent overprocessing of damaged replication forks that can be detrimental to genome stability. The checkpoint protein Rad9/53BP1 is known to limit nucleolytic degradation (resection) of DNA double-strand breaks (DSBs) in both yeast and mammals. Here, we show that loss of the inhibition that Rad9 exerts on resection exacerbates the sensitivity to replication stress of Mec1/ATR-defective yeast cells by exposing stalled replication forks to Dna2-dependent degradation. This Rad9 protective function is independent of checkpoint activation and relies mainly on Rad9-Dpb11 interaction. We propose that Rad9/53BP1 supports cell viability by protecting stalled replication forks from extensive resection when the intra-S checkpoint is not fully functional.


Subject(s)
DNA Replication , Intracellular Signaling Peptides and Proteins/deficiency , Protein Serine-Threonine Kinases/deficiency , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Cycle Proteins/metabolism , Microbial Viability , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological
16.
PLoS Genet ; 11(11): e1005685, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26584331

ABSTRACT

The MRX complex together with Sae2 initiates resection of DNA double-strand breaks (DSBs) to generate single-stranded DNA (ssDNA) that triggers homologous recombination. The absence of Sae2 not only impairs DSB resection, but also causes prolonged MRX binding at the DSBs that leads to persistent Tel1- and Rad53-dependent DNA damage checkpoint activation and cell cycle arrest. Whether this enhanced checkpoint signaling contributes to the DNA damage sensitivity and/or the resection defect of sae2Δ cells is not known. By performing a genetic screen, we identify rad53 and tel1 mutant alleles that suppress both the DNA damage hypersensitivity and the resection defect of sae2Δ cells through an Sgs1-Dna2-dependent mechanism. These suppression events do not involve escaping the checkpoint-mediated cell cycle arrest. Rather, defective Rad53 or Tel1 signaling bypasses Sae2 function at DSBs by decreasing the amount of Rad9 bound at DSBs. As a consequence, reduced Rad9 association to DNA ends relieves inhibition of Sgs1-Dna2 activity, which can then compensate for the lack of Sae2 in DSB resection and DNA damage resistance. We propose that persistent Tel1 and Rad53 checkpoint signaling in cells lacking Sae2 increases the association of Rad9 at DSBs, which in turn inhibits DSB resection by limiting the activity of the Sgs1-Dna2 resection machinery.


Subject(s)
Cell Cycle Proteins/genetics , Checkpoint Kinase 2/genetics , DNA Breaks, Double-Stranded , Endonucleases/genetics , Genomic Instability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle/genetics , DNA Damage/genetics , DNA Helicases/genetics , Homologous Recombination/genetics , Hypersensitivity/genetics , Phosphorylation , RecQ Helicases/genetics , Saccharomyces cerevisiae/genetics
17.
EMBO Rep ; 16(3): 351-61, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25637499

ABSTRACT

Homologous recombination requires nucleolytic degradation (resection) of DNA double-strand break (DSB) ends. In Saccharomyces cerevisiae, the MRX complex and Sae2 are involved in the onset of DSB resection, whereas extensive resection requires Exo1 and the concerted action of Dna2 and Sgs1. Here, we show that the checkpoint protein Rad9 limits the action of Sgs1/Dna2 in DSB resection by inhibiting Sgs1 binding/persistence at the DSB ends. When inhibition by Rad9 is abolished by the Sgs1-ss mutant variant or by deletion of RAD9, the requirement for Sae2 and functional MRX in DSB resection is reduced. These results provide new insights into how early and long-range resection is coordinated.


Subject(s)
Cell Cycle Proteins/metabolism , Endonucleases/metabolism , Multiprotein Complexes/metabolism , RecQ Helicases/metabolism , Recombinational DNA Repair/physiology , Saccharomyces cerevisiae Proteins/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Models, Biological , Recombinational DNA Repair/genetics , Saccharomyces cerevisiae
18.
Cell Mol Life Sci ; 73(19): 3655-63, 2016 10.
Article in English | MEDLINE | ID: mdl-27141941

ABSTRACT

DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast.


Subject(s)
Cell Cycle Checkpoints , DNA Breaks, Double-Stranded , Saccharomyces cerevisiae/metabolism , Endonucleases/metabolism , Models, Biological , Saccharomyces cerevisiae Proteins/metabolism
19.
Angew Chem Int Ed Engl ; 56(13): 3585-3589, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28233953

ABSTRACT

The replacement of noble metal technologies and the realization of new reactivities with earth-abundant metals is at the heart of sustainable synthesis. Alkene hydrogenations have so far been most effectively performed by noble metal catalysts. This study reports an iron-catalyzed hydrogenation protocol for tri- and tetra-substituted alkenes of unprecedented activity and scope under mild conditions (1-4 bar H2 , 20 °C). Instructive snapshots at the interface of homogeneous and heterogeneous iron catalysis were recorded by the isolation of novel Fe nanocluster architectures that act as catalyst reservoirs and soluble seeds of particle growth.

20.
Angew Chem Int Ed Engl ; 56(29): 8451-8454, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28563698

ABSTRACT

Catalyzing C-C bond-forming reactions with earth-abundant metals under mild conditions is at the heart of sustainable synthesis. The cyclotrimerization of alkynes is a valuable atom-efficient reaction in organic synthesis that is enabled by several metal catalysts, including iron. This study reports an effective iron-catalyzed cyclotrimerization for the regioselective synthesis of 1,2,4-substituted arenes (1 mol % catalyst, toluene, 20 °C, 5 min). A dual activation mechanism (substrate deprotonation, reductive elimination) renders the simple FeII precatalyst highly active in the absence of any reductant.

SELECTION OF CITATIONS
SEARCH DETAIL