Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398325

ABSTRACT

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Subject(s)
Cell Communication/genetics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Sequence Analysis, RNA , Animals , Cellular Reprogramming/genetics , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Ligands , Liver/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/genetics , Single-Cell Analysis
2.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35460423

ABSTRACT

Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas.


Subject(s)
Genetics, Population , Genome, Human , Genomics/methods , Hispanic or Latino/genetics , Humans , Polymorphism, Single Nucleotide/genetics , White People/genetics
3.
J Gastroenterol Hepatol ; 38(5): 791-799, 2023 May.
Article in English | MEDLINE | ID: mdl-36807933

ABSTRACT

BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease. Increasing evidence indicates that the gut microbiota can play an important role in the pathophysiology of NAFLD. Recently, several studies have tested the predictive value of gut microbiome profiles in NAFLD progression; however, comparisons of microbial signatures in NAFLD or non-alcoholic steatohepatitis (NASH) have produced discrepant results, possibly due to ethnic and environmental factors. Thus, we aimed to characterize the gut metagenome composition of patients with fatty liver disease. METHODS: Gut microbiome of 45 well-characterized patients with obesity and biopsy-proven NAFLD was evaluated using shot-gun sequencing: 11 non-alcoholic fatty liver controls (non-NAFL), 11 with fatty liver, and 23 with NASH. RESULTS: Our study showed that Parabacteroides distasonis and Alistipes putredenis were enriched in fatty liver but not in NASH patients. Notably, in a hierarchical clustering analysis, microbial profiles were differentially distributed among groups, and membership to a Prevotella copri dominant cluster was associated with a greater risk of developing NASH. Functional analyses showed that although no differences in LPS biosynthesis pathways were observed, Prevotella-dominant subjects had higher circulating levels of LPS and a lower abundance of pathways encoding butyrate production. CONCLUSIONS: Our findings suggest that a Prevotella copri dominant bacterial community is associated with a greater risk for NAFLD disease progression, probably linked to higher intestinal permeability and lower capacity for butyrate production.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Metagenome , Lipopolysaccharides , Prevotella/genetics , Obesity/complications , Butyrates
4.
Arterioscler Thromb Vasc Biol ; 41(9): 2494-2508, 2021 09.
Article in English | MEDLINE | ID: mdl-34233476

ABSTRACT

Objective: Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results: A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions: This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.


Subject(s)
Cholesterol, HDL/blood , Coronary Artery Disease/genetics , Hyperlipoproteinemia Type II/genetics , Nucleotide Transport Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Age of Onset , Animals , Biomarkers/blood , Case-Control Studies , Child , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Disease Models, Animal , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , HEK293 Cells , Heart Disease Risk Factors , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Male , Mendelian Randomization Analysis , Mexico/epidemiology , Mice , Middle Aged , Nucleotide Transport Proteins/metabolism , Phenotype , Risk Assessment
5.
Mol Med ; 27(1): 108, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34525937

ABSTRACT

BACKGROUND: Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. METHODS: Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10-12 years old) and amino acid targeted metabolomics analysis was performed by LC-MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. RESULTS: We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). CONCLUSIONS: We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.


Subject(s)
Amino Acids, Branched-Chain/blood , Faecalibacterium prausnitzii/physiology , Gastrointestinal Microbiome , Adolescent , Age Factors , Amino Acids, Branched-Chain/metabolism , Biomarkers , Body Weights and Measures , Child , Female , Humans , Insulin Resistance , Male , Metabolomics/methods , Metagenome , Metagenomics/methods , Obesity/metabolism , Public Health Surveillance
6.
BMC Med Genet ; 18(1): 46, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464932

ABSTRACT

BACKGROUND: The aim of this study was to explore whether interactions between FTO rs9939609 and ABCA1 rs9282541 affect BMI and waist circumference (WC), and could explain previously reported population differences in FTO-obesity and FTO-BMI associations in the Mexican and European populations. METHODS: A total of 3938 adults and 636 school-aged children from Central Mexico were genotyped for both polymorphisms. Subcutaneous and visceral adipose tissue biopsies from 22 class III obesity patients were analyzed for FTO and ABCA1 mRNA expression. Generalized linear models were used to test for associations and gene-gene interactions affecting BMI, WC and FTO expression. RESULTS: FTO and ABCA1 risk alleles were not individually associated with higher BMI or WC. However, in the absence of the ABCA1 risk allele, the FTO risk variant was significantly associated with higher BMI (P = 0.043) and marginally associated with higher WC (P = 0.067), as reported in Europeans. The gene-gene interaction affecting BMI and WC was statistically significant only in adults. FTO mRNA expression in subcutaneous abdominal adipose tissue according to ABCA1 genotype was consistent with these findings. CONCLUSIONS: This is the first report showing evidence of FTO and ABCA1 gene variant interactions affecting BMI, which may explain previously reported population differences. Further studies are needed to confirm this interaction.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Body Mass Index , Epistasis, Genetic , Indians, North American/genetics , Adult , Child , Female , Humans , Male , Mexico
7.
J Hum Genet ; 62(3): 413-418, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27881840

ABSTRACT

Obesity is a major public health concern in Mexico and worldwide. Although the estimated heritability is high, common variants identified by genome-wide association studies explain only a small proportion of this heritability. A combination of linkage and association strategies could be a more robust and powerful approach to identify other obesity-susceptibility variants. We thus sought to identify novel genetic variants associated with obesity-related traits in the Mexican population by combining these methods. We performed a genome-wide linkage scan for body mass index (BMI) and other obesity-related phenotypes in 16 Mexican families using the Sequential Oligogenic Linkage Analysis Routines Program. Associated single-nucleotide polymorphisms (SNPs) were tested for associations in an independent cohort. Two suggestive BMI-linkage peaks (logarithm of odds ⩾1.5) were observed at chromosomal regions 11q13 and 13q22. Only rs614080 in the 11q13 region was significantly associated with BMI and related traits in these families. This association was also significant in an independent cohort of Mexican adults. Moreover, this variant was significantly associated with GSTP1 gene expression levels in adipose tissue. In conclusion, the rs614080 SNP near the GSTP1 gene was significantly associated with BMI and GSTP1 expression levels in the Mexican population.


Subject(s)
Genetic Predisposition to Disease , Glutathione S-Transferase pi/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adolescent , Adult , Aged , Body Mass Index , Chromosomes, Human, Pair 11/chemistry , Family , Female , Genetic Linkage , Genome-Wide Association Study , Humans , Inheritance Patterns , Male , Mexico/epidemiology , Middle Aged , Obesity/epidemiology , Obesity/pathology
8.
Liver Int ; 36(9): 1383-91, 2016 09.
Article in English | MEDLINE | ID: mdl-26945479

ABSTRACT

BACKGROUND AND AIM: Abnormal cholesterol metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH) and fibrosis. miR-33 and miR-144 regulate adenosine triphosphate binding cassette transporter (ABCA1) and other target genes involved in cholesterol efflux, fatty acid oxidation and inflammation. We explored relationships between non-alcoholic fatty liver disease (NAFLD) and the hepatic expression of ABCA1/ABCG1, as well as other target genes regulated by miR-33 (carnitine O-octanoyltransferase, CROT and hydroxyacyl-CoA-dehydrogenase ß-subunit, HADHB) and miR-144 (toll-like receptor-2, TLR2). Moreover, we evaluated whether the expression of these genes is correlated with miR-33a/b and miR-144 expression in Mexican individuals with morbid obesity. METHODS: Eighty-four morbidly obese subjects undergoing bariatric surgery were included in this study. Liver biopsies were obtained to measure hepatic triglyceride and free cholesterol contents, as well as ABCA1, ABCG1, CROT, HADHB, TLR2, miR-33a/b and miR-144 expression. RESULTS: Hepatic free cholesterol content was significantly increased in NASH as compared to non-NASH subjects, while ABCA1 and ABCG1 protein levels significantly decreased with NASH and fibrosis progression. The relative expression of miR-33a and miR-144 correlated inversely with ABCA1 but not with ABCG1 protein levels. Moreover, both miRNAs increased significantly in NASH individuals. miR-33 target genes CROT and HADHB correlated inversely with miR-33a. However, the expression of these genes was not associated with NASH. CONCLUSIONS: miR-33a/144 and their target gene ABCA1 may contribute to the pathogenesis of NASH in morbidly obese subjects.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity, Morbid/complications , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adult , Bariatric Surgery , Cholesterol/metabolism , Female , Gene Expression , Humans , Immunohistochemistry , Liver/metabolism , Liver/pathology , Male , Mexico , Middle Aged , Non-alcoholic Fatty Liver Disease/pathology , Obesity, Morbid/surgery , Triglycerides/metabolism , Young Adult
9.
Exp Mol Pathol ; 98(2): 178-83, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25597287

ABSTRACT

BACKGROUND AND AIMS: Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) near/in PNPLA3, NCAN, LYPLAL1, PPP1R3B, and GCKR genes associated with non-alcoholic fatty liver disease (NAFLD) mainly in individuals of European ancestry. The aim of the study was to test whether these genetic variants and a genetic risk score (GRS) are associated with elevated liver fat content and non-alcoholic steatohepatitis (NASH) in Mexicans with morbid obesity. METHODS: 130 morbidly obese Mexican individuals were genotyped for six SNPs in/near PNPLA3, NCAN, LYPLAL1, PPP1R3B, and GCKR genes. Hepatic fat content [triglyceride (HTG) and total cholesterol (HTC)] was quantified directly in liver biopsies and NASH was diagnosed by histology. A GRS was tested for association with liver fat content and NASH using logistic regression models. In addition, 95 ancestry-informative markers were genotyped to estimate population admixture proportions. RESULTS: After adjusting for age, sex and admixture, PNPLA3, LYPLAL1, GCKR and PPP1R3B polymorphisms were associated with higher HTG content (P < 0.05 for PNPLA3, LYPLAL1, GCKR polymorphisms and P = 0.086 for PPP1R3B). The GRS was significantly associated with higher HTG and HTC content (P = 1.0 × 10(-4) and 0.048, respectively), steatosis stage (P = 0.029), and higher ALT levels (P = 0.002). Subjects with GRS ≥ 6 showed a significantly increased risk of NASH (OR = 2.55, P = 0.045) compared to those with GRS ≤ 5. However, the GRS did not predict NASH status, as AUC of ROC curves was 0.56 (P = 0.219). CONCLUSION: NAFLD associated loci in Europeans and a GRS based on these loci contribute to the accumulation of hepatic lipids and NASH in morbidly obese Mexican individuals.


Subject(s)
Cholesterol/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity, Morbid/pathology , Triglycerides/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adult , Cholesterol/analysis , Chondroitin Sulfate Proteoglycans/genetics , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lectins, C-Type/genetics , Lipase/genetics , Lysophospholipase/genetics , Male , Membrane Proteins/genetics , Mexico , Nerve Tissue Proteins/genetics , Neurocan , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity, Morbid/genetics , Obesity, Morbid/metabolism , Polymorphism, Single Nucleotide , Protein Phosphatase 1/genetics , Triglycerides/analysis , White People/genetics
10.
Ann Hepatol ; 14(5): 666-74, 2015.
Article in English | MEDLINE | ID: mdl-26256895

ABSTRACT

BACKGROUND AND AIMS: Secreted frizzled-related protein 5 (SFRP5) was recently described as a new adipokine protective for hepatic steatosis and other obesity-related complications in the mouse model. To date, SFRP5 expression in non-alcoholic fatty liver disease (NAFLD) has not been fully assessed in humans. We measured circulating SFRP5 levels and its expression in liver and adipose tissue, and evaluated its association with NAFLD in morbidly obese women. MATERIAL AND METHODS: Fifty-four morbidly obese women undergoing bariatric surgery were included in the study. Liver biopsies were used for histology and hepatic triglyceride content quantification. Circulating SFRP5 levels were measured through enzyme-linked immunoabsorbent assay, and SFRP5 expression was performed in hepatic and adipose tissue (subcutaneous and visceral). RESULTS: Although circulating SFRP5 levels showed a tendency to decrease with NAFLD progression, no significant differences were observed among non-alcoholic steatosis, steatohepatitis, and control subjects. Hepatic SFRP5 expression showed a negative correlation with hepatic triglyceride content (r = -0.349, P = 0.016 for mRNA and r = -0.291, P = 0.040 for SRFP5 protein) and ALT serum levels (r = -0.437, P = 0.001 for SRFP5 protein). In addition, hepatic SFRP5 protein levels were significantly lower in NASH than in control subjects (P = 0.006). CONCLUSION: This is the first study reporting an association of hepatic SFRP5 expression with NAFLD in humans.


Subject(s)
Eye Proteins/analysis , Liver/chemistry , Membrane Proteins/analysis , Non-alcoholic Fatty Liver Disease/etiology , Obesity, Morbid/complications , Adaptor Proteins, Signal Transducing , Adult , Bariatric Surgery , Biopsy , Cross-Sectional Studies , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Eye Proteins/blood , Eye Proteins/genetics , Female , Humans , Immunohistochemistry , Intra-Abdominal Fat/chemistry , Membrane Proteins/blood , Membrane Proteins/genetics , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity, Morbid/diagnosis , Obesity, Morbid/surgery , Polymerase Chain Reaction , RNA, Messenger/genetics , Severity of Illness Index , Subcutaneous Fat/chemistry , Triglycerides/analysis , Young Adult
11.
Mol Biol Rep ; 41(7): 4705-11, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24691744

ABSTRACT

The patatin like phospholipase domain-containing (PNPLA3) I148M variant is the strongest genetic factor associated with elevated alanine transaminase (ALT) levels in different populations, particularly in Hispanics who have the highest 148M risk allele frequency reported to date. It has been suggested that Indigenous ancestry is associated with higher ALT levels in Mexicans. The aim of the present study was to assess the frequency of the PNPLA3 148M risk allele in Mexican indigenous and Mestizo individuals, and to examine its association with serum ALT levels. The study included a total of 1624 Mexican individuals: 919 Indigenous subjects from five different native groups and 705 Mexican Mestizo individuals (141 cases with ALT levels ≥ 40 U/L and 564 controls with ALT <40 U/L). The I148M polymorphism was genotyped by TaqMan assays. The frequency of elevated ALT levels in Indigenous populations was 18.7%, and varied according to obesity status: 14.4% in normal weight, 19.9% in overweight and 24.5% in obese individuals. The Mexican indigenous populations showed the highest reported frequency of the PNPLA3 148M risk allele (mean 0.73). The M148M genotype was significantly associated with elevated ALT levels in indigenous individuals (OR = 3.15, 95 % CI 1.91-5.20; P = 7.1 × 10(-6)) and this association was confirmed in Mexican Mestizos (OR = 2.24, 95% CI 1.50-3.33; P = 8.1 × 10(-5)). This is the first study reporting the association between M148M genotype and elevated ALT levels in Indigenous Mexican populations. The 148M allele risk may be considered an important risk factor for liver damage in Mexican indigenous and Mestizo populations.


Subject(s)
Alanine Transaminase/genetics , Fatty Liver/genetics , Lipase/genetics , Liver/enzymology , Membrane Proteins/genetics , Obesity/genetics , Polymorphism, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Alanine Transaminase/metabolism , Alleles , Fatty Liver/complications , Fatty Liver/enzymology , Fatty Liver/ethnology , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Indians, South American , Lipase/metabolism , Liver/pathology , Male , Membrane Proteins/metabolism , Mexico/epidemiology , Middle Aged , Obesity/complications , Obesity/enzymology , Obesity/ethnology , Population Groups
12.
Obesity (Silver Spring) ; 31(8): 2129-2138, 2023 08.
Article in English | MEDLINE | ID: mdl-37403220

ABSTRACT

OBJECTIVE: The increased prevalence of childhood metabolic syndrome (MetS) is a public health issue. It has been shown that a dysregulated bile acid (BA) profile could be involved in the development of MetS, in which the gut microbiota could have a significant role in BA levels. This study aimed to evaluate differences in serum BA levels in children with and without MetS and whether these levels were associated with gut microbial composition. METHODS: A total of 100 children aged 10 to 12 years were enrolled in this study, 42 children with MetS (cases) and 58 control participants. Serum BAs were measured by liquid chromatography-tandem mass spectrometry and gut microbiota was determined by 16S ribosomal RNA gene sequencing. RESULTS: Children with MetS showed higher levels of total, secondary, and 12α-hydroxylated BAs, as well as deoxycholic acid, and these were associated with dyslipidemia and insulin resistance markers. Interestingly, total BAs were negatively correlated with gut bacterial diversity (Shannon index: rho = -0.218, p = 0.035), whereas total, 12α-hydroxylated, and secondary BAs, as well as deoxycholic acid, showed negative correlations with genera known for their potential health effects, including Bifidobacterium, Akkermansia, and Faecalibacterium. CONCLUSIONS: This study suggests that childhood MetS is associated with a dysregulated BA pool and that these alterations could influence the abundance of potentially beneficial bacteria, thus contributing to gut microbial dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Child , Humans , Adolescent , Bile Acids and Salts , Dysbiosis , Deoxycholic Acid
13.
Genes (Basel) ; 14(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37761915

ABSTRACT

Metabolic diseases, including obesity, diabetes, and metabolic syndrome, are among the most important public health challenges worldwide. Metabolic diseases are classified as multifactorial diseases in which genetic variants such as single-nucleotide polymorphisms (SNPs) may play an important role. The present study aimed to identify associations linking allelic variants of the PCSK1, TMEM18, GPX5, ZPR1, ZBTB16, and PPARG1 genes with anthropometric and biochemical traits and metabolic diseases (obesity or metabolic syndrome) in an adult population from northwestern Mexico. METHODS: Blood samples were collected from 523 subjects, including 247 with normal weight, 276 with obesity, and 147 with metabolic syndrome. Anthropometric and biochemical characteristics were recorded, and single-nucleotide polymorphisms (SNPs) were genotyped by real-time PCR. RESULTS: PCSK1 was significantly (p < 0.05) associated with BMI, weight, and waist-to-hip ratio; TMEM18 was significantly associated with systolic blood pressure and triglyceride levels; GPX5 was significantly associated with HDL cholesterol levels. In addition, PCSK1 was associated with obesity (p = 1.0 × 10-4) and metabolic syndrome (p = 3.0 × 10-3), whereas PPARG1 was associated with obesity (p = 0.044). CONCLUSIONS: The associations found in this study, mainly between allelic variants of PCSK1 and metabolic traits, obesity, and metabolic syndrome, may represent a risk for developing metabolic diseases in adult subjects from northwestern Mexico.


Subject(s)
Metabolic Syndrome , Adult , Humans , Metabolic Syndrome/genetics , Mexico/epidemiology , Alleles , Obesity/genetics , Genotype , PPAR gamma/genetics , Proprotein Convertase 1
14.
Commun Biol ; 6(1): 958, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816865

ABSTRACT

The Nav1.7 voltage-gated sodium channel plays a key role in nociception. Three functional variants in the SCN9A gene (encoding M932L, V991L, and D1908G in Nav1.7), have recently been identified as stemming from Neanderthal introgression and to associate with pain symptomatology in UK BioBank data. In 1000 genomes data, these variants are absent in Europeans but common in Latin Americans. Analysing high-density genotype data from 7594 Latin Americans, we characterized Neanderthal introgression in SCN9A. We find that tracts of introgression occur on a Native American genomic background, have an average length of ~123 kb and overlap the M932L, V991L, and D1908G coding positions. Furthermore, we measured experimentally six pain thresholds in 1623 healthy Colombians. We found that Neanderthal ancestry in SCN9A is significantly associated with a lower mechanical pain threshold after sensitization with mustard oil and evidence of additivity of effects across Nav1.7 variants. Our findings support the reported association of Neanderthal Nav1.7 variants with clinical pain, define a specific sensory modality affected by archaic introgression in SCN9A and are consistent with independent effects of the Neanderthal variants on Nav1.7 function.


Subject(s)
Neanderthals , Pain Threshold , Humans , Animals , Neanderthals/genetics , Pain/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Nociception
15.
Commun Biol ; 6(1): 481, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156940

ABSTRACT

We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10-8) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.


Subject(s)
Neanderthals , Humans , Animals , Mice , Neanderthals/genetics , Genome-Wide Association Study , Nose , Cell Differentiation
16.
Hum Mol Genet ; 19(14): 2877-85, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20418488

ABSTRACT

It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cholesterol, HDL/blood , Indians, North American/genetics , Selection, Genetic , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/physiology , Adult , Alleles , Cholesterol, HDL/genetics , Female , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Geography , Haplotypes , Humans , Linkage Disequilibrium , Male
17.
Rev Invest Clin ; 64(2): 164-72, 2012.
Article in English | MEDLINE | ID: mdl-22991778

ABSTRACT

BACKGROUND: Glutamine synthetase (GS) plays a central role in the inter-organ metabolism of ammonia and hepatic encephalopathy. The main objective of the present work was to disclose the possible effect of exercise on GS mRNA expression in peripheral blood mononuclear cells (PBMC) within a group of healthy volunteers. MATERIAL AND METHODS: PBMC were studied instead of skeletal muscle because of ethical concerns. Characterization of GS in lymphocytes was carried out by indirect immunofluorescence and Western blot. After a pilot trial, expression of GS mRNA in PBMC was assayed by serial measurements in healthy volunteers who had exercised on a treadmill, and on a control group who had not. Muscle mass was estimated by bioimpedance. RESULTS: Cytoplasmic GS had a molecular weight of 44 kDa. Serial measurements of its mRNA demonstrated an increase in the treadmill (n = 29), but not in the control group (n = 13) (p < 0.05). Peak expression occurred at 1 h in males and at 6 h in females. There was a positive correlation between muscle mass and the increase of the enzyme mRNA after exercise. CONCLUSION: Exercise can increase the expression of GS mRNA in PBMC in healthy volunteers. Based on these preliminary results and on well-established physiological concepts, a hypothesis for non-hepatic ammonia metabolism is conceived. In the future could become part of the treatment of low-grade hepatic encephalopathy.


Subject(s)
Ammonia/metabolism , Exercise/physiology , Glutamate-Ammonia Ligase/genetics , Leukocytes, Mononuclear/metabolism , Adult , Female , Humans , Leukocytes, Mononuclear/enzymology , Liver/metabolism , Male , RNA, Messenger/biosynthesis
18.
Nutrients ; 14(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36079803

ABSTRACT

Gut microbiota has been suggested to modulate circulating lipids. However, the relationship between the gut microbiota and atherogenic dyslipidemia (AD), defined as the presence of both low HDL-C and hypertriglyceridemia, is not fully understood. Moreover, because obesity is among the main causes of secondary AD, it is important to analyze the effect of gut microbiota composition on lipid profiles after a weight loss intervention. We compared the microbial diversity and taxonomic composition in patients with AD (n = 41) and controls (n = 38) and sought correlations of genera abundance with serum lipid levels in 20 patients after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Gut microbiota composition was profiled using next-generation sequencing of 16S rRNA. Gut microbiota diversity was significantly lower in atherogenic dyslipidemia. Moreover, relative abundance of two genera with LDA score >3.5 (Megasphaera and LPS-producing Escherichia-Shigella), was significantly higher in AD subjects, while the abundance of four short chain fatty acids (SCFA) producing-genera (Christensenellaceae R-7, Ruminococcaceae UCG-014; Akkermansia and [Eubacterium] eligens group) was significantly higher in controls. Notably, [Eubacterium] eligens group abundance was also significantly associated with higher HDL-C levels in RYGB patients one year after surgery. Although dietary polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio and PUFA intake were higher in controls than in AD subjects, of the four genera differentiated in cases and controls, only Akkermansia abundance showed a positive and significant correlation with PUFA/SFA ratio. Our results suggest that SCFA-producing bacteria promote a healthy lipid homeostasis, while the presence of LPS-producing bacteria such Escherichia-Shigella may contribute to the development of atherogenic dyslipidemia.


Subject(s)
Bariatric Surgery , Dyslipidemias , Gastrointestinal Microbiome , Fatty Acids, Volatile , Humans , Lipopolysaccharides , RNA, Ribosomal, 16S/genetics , Weight Loss
19.
Genes (Basel) ; 13(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36553534

ABSTRACT

The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We tested the association of this mutation with obesity in 1683 Mexican adults, and compared the response of mutation carriers and non-carriers to three different weight loss interventions: dietary restriction intervention, phentermine 30 mg/day treatment, and Roux-en-Y gastric bypass (RYGB) surgery. The Ile269Asn mutation was associated with obesity [OR = 3.8, 95% CI (1.5-9.7), p = 0.005]. Regarding interventions, in the dietary restriction group only two patients were MC4R Ile269Asn mutation carriers. After 1 month of treatment, both mutation carriers lost weight: -4.0 kg (-2.9%) in patient 1, and -1.8 kg (-1.5%) in patient 2; similar to the mean weight loss observed in six non-carrier subjects (-2.9 kg; -2.8%). Phentermine treatment produced similar weight loss in six carriers (-12.7 kg; 15.5%) and 18 non-carriers (-11.3 kg; 13.6%) after 6 months of pharmacological treatment. RYGB also caused similar weight loss in seven carriers (29.9%) and 24 non-carriers (27.8%), 6 months after surgery. Our findings suggest that while the presence of a single MC4R loss of function Ile269Asn allele significantly increases obesity risk, the presence of at least one functional MC4R allele seems sufficient to allow short-term weight loss in response to dietary restriction, phentermine and RYGB. Thus, these three different interventions may be useful for the short-term treatment of obesity in MC4R Ile269Asn mutation carriers.


Subject(s)
Bariatric Surgery , Phentermine , Receptor, Melanocortin, Type 4 , Adult , Humans , Mutation , Obesity/genetics , Obesity/surgery , Weight Loss/genetics , Receptor, Melanocortin, Type 4/genetics
20.
J Diabetes Complications ; 35(11): 108025, 2021 11.
Article in English | MEDLINE | ID: mdl-34420811

ABSTRACT

AIM: To identify associations among allelic variants of the genes FTO, ABCA1, ADRB3, and PPARG with anthropometric and biochemical traits, metabolic diseases (obesity, T2D or metabolic syndrome) in an adult population from Northwest Mexico. METHODS: Blood samples were collected from 846 subjects including 266 normal weight subjects, 285 with obesity, and 295 with T2D. Of the 846 persons in the study, 365 presented metabolic syndrome diagnostic criteria. Anthropometric and biochemical traits were recorded and 4 single nucleotide polymorphisms (SNPs): FTO rs9939609 A-allele, ABCA1 rs9282541 A-allele, ADRB3 rs4994 G-allele, and PPARG rs1801282 G-allele were genotyped by real-time PCR. RESULTS: FTO rs9939609 A-allele was significantly associated with obesity (p: 8.3 × 10-4), and metabolic syndrome (p: 0.001), but no individual SNPs were significantly associated with T2D. Finally, the cumulative risk of the four SNPs was significantly associated with obesity (p: 1.95 × 10-4). CONCLUSION: Associations in FTO, ABCA, ADRB3, and PPARG SNPs presented in this study with obesity and metabolic syndrome could represent a risk for developing metabolic diseases in Northwest Mexican adult subjects.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Obesity , ATP Binding Cassette Transporter 1 , Adult , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genotype , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Mexico/epidemiology , Obesity/complications , Obesity/genetics , PPAR gamma/genetics , Polymorphism, Single Nucleotide , Receptors, Adrenergic, beta-3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL