Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 96(1): 1-20, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38568026

ABSTRACT

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.


Subject(s)
Biomarkers , Disease Progression , Multiple Sclerosis , Humans , Biomarkers/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/metabolism , Recurrence
2.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063050

ABSTRACT

Multiple studies have shown the importance of blood-based biomarkers indicating axonal damage (serum neurofilament light chains [sNfL]) or astroglia activation (serum glial fibrillary acidic protein [sGFAP]) for monitoring different neurological diseases. However, normal values of these variables remain to be clearly defined, partly due to the influence of different demographic factors. We investigated demographic differences in a cohort of healthy volunteers. A cross-sectional study was conducted including 116 healthy controls with ages between 18 and 69 years (67.5% females; n = 79). sNfL and sGFAP concentrations were measured using single-molecule arrays. Age and body mass index affected sNfL values, and age was found to be the most important factor. The normal values changed with age, and we established normal values for individuals younger than 45 years as <10 pg/mL and for controls older than 45 years as <15 pg/mL. We established normal values at <10 pg/mL for individuals younger than 45 years and <15 pg/mL for older individuals. Alternatively, a Z-score of 1.5 was relevant for all controls. sGFAP was only affected by age. Differences in normal values were evident by 55 years. The highest normality limit for sGFAP was 140 pg/mL for controls under 55 years and 280 for older controls. We defined normal levels for sNfL and sGFAP and their corresponding age-associated changes. These data may contribute to the application of such variables in clinical practice.


Subject(s)
Biomarkers , Glial Fibrillary Acidic Protein , Neurofilament Proteins , Humans , Adult , Middle Aged , Neurofilament Proteins/blood , Female , Male , Glial Fibrillary Acidic Protein/blood , Aged , Adolescent , Biomarkers/blood , Young Adult , Cross-Sectional Studies , Healthy Volunteers , Age Factors , Reference Values
3.
Mult Scler ; 29(2): 182-195, 2023 02.
Article in English | MEDLINE | ID: mdl-36527368

ABSTRACT

Cerebrospinal fluid (CSF) analysis is of utmost importance for diagnosis and differential diagnosis of patients with suspected multiple sclerosis (MS). Evidence of intrathecal immunoglobulin G (IgG) synthesis proves the inflammatory nature of the disease, increases diagnostic certainty and substitutes for dissemination in time according to current diagnostic criteria. The gold standard to determine intrathecal IgG synthesis is the detection of CSF-restricted oligoclonal bands (OCBs). However, advances in laboratory methods brought up κ-free light chains (FLCs) as a new biomarker, which are produced in excess over intact immunoglobulins and accumulate in CSF in the case of central nervous system-derived inflammation. Overwhelming evidence showed a high diagnostic accuracy of intrathecal κ-FLC synthesis in MS with sensitivity and specificity of approximately 90% similar to OCB. κ-FLCs have advantages as its detection is fast, easy, cost-effective, reliable, rater-independent and returning quantitative results which might also improve the value of predicting MS disease activity. An international panel of experts in MS and CSF diagnostics developed a consensus of all participants. Six recommendations are given for establishing standard CSF evaluation in patients suspected of having MS. The panel recommended to include intrathecal κ-FLC synthesis in the next revision of MS diagnostic criteria as an additional tool to measure intrathecal immunoglobulin synthesis.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Multiple Sclerosis/cerebrospinal fluid , Immunoglobulin kappa-Chains/cerebrospinal fluid , Immunoglobulin G/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Sensitivity and Specificity , Oligoclonal Bands/cerebrospinal fluid
4.
J Neuroinflammation ; 19(1): 277, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403026

ABSTRACT

BACKGROUND: The increasing number of treatments that are now available to manage patients with multiple sclerosis (MS) highlights the need to develop biomarkers that can be used within the framework of individualized medicine. Fingolimod is a disease-modifying treatment that belongs to the sphingosine-1-phosphate receptor modulators. In addition to inhibiting T cell egress from lymph nodes, fingolimod promotes the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), whose monocytic subset (M-MDSCs) can be used as a biomarker of disease severity, as well as the degree of demyelination and extent of axonal damage in the experimental autoimmune encephalomyelitis (EAE) model of MS. In the present study, we have assessed whether the abundance of circulating M-MDSCs may represent a useful biomarker of fingolimod efficacy in EAE and in the clinical context of MS patients. METHODS: Treatment with vehicle or fingolimod was orally administered to EAE mice for 14 days in an individualized manner, starting the day when each mouse began to develop clinical signs. Peripheral blood from EAE mice was collected previous to treatment and human peripheral blood mononuclear cells (PBMCs) were collected from fingolimod to treat MS patients' peripheral blood. In both cases, M-MDSCs abundance was analyzed by flow cytometry and its relationship with the future clinical affectation of each individual animal or patient was assessed. RESULTS: Fingolimod-treated animals presented a milder EAE course with less demyelination and axonal damage, although a few animals did not respond well to treatment and they invariably had fewer M-MDSCs prior to initiating the treatment. Remarkably, M-MDSC abundance was also found to be an important and specific parameter to distinguish EAE mice prone to better fingolimod efficacy. Finally, in a translational effort, M-MDSCs were quantified in MS patients at baseline and correlated with different clinical parameters after 12 months of fingolimod treatment. M-MDSCs at baseline were highly representative of a good therapeutic response to fingolimod, i.e., patients who met at least two of the criteria used to define non-evidence of disease activity-3 (NEDA-3) 12 months after treatment. CONCLUSION: Our data indicate that M-MDSCs might be a useful predictive biomarker of the response of MS patients to fingolimod.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Myeloid-Derived Suppressor Cells , Humans , Animals , Mice , Fingolimod Hydrochloride/therapeutic use , Myeloid-Derived Suppressor Cells/pathology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Leukocytes, Mononuclear , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Biomarkers
5.
Eur J Neurol ; 29(3): 895-900, 2022 03.
Article in English | MEDLINE | ID: mdl-34662474

ABSTRACT

BACKGROUND AND PURPOSE: Short-chain fatty acids (SCFAs) can have pro- or anti-inflammatory properties, but their relationship with multiple sclerosis (MS) relapses during pregnancy remains unknown. This study aimed to explore SCFA profiles in MS patients during pregnancy and to assess their association with the appearance of relapses during pregnancy and postpartum. METHODS: We prospectively included 53 pregnant MS patients and 21 healthy control women. Patients were evaluated during pregnancy and puerperium. SCFAs were measured by liquid chromatography-mass spectrometry. RESULTS: Sixteen patients (32%) had relapses during pregnancy or puerperium, and 37 (68%) did not. All MS patients showed significant increases in acetate levels during pregnancy and the postpartum period compared to non-MS women. However, propionate and butyrate values were associated with disease activity. Their values were higher in nonrelapsing patients and remained similar to the control group in relapsing patients. The variable that best identified active patients was the propionate/acetate ratio. Ratios of <0.36 during the first trimester were associated with higher inflammatory activity (odds ratio = 165, 95% confidence interval = 10.2-239.4, p < 0.01). Most nonrelapsing patients showed values of >0.36, which were similar to those in healthy pregnant women. CONCLUSIONS: Low propionate/acetate ratio values during the first trimester of gestation identified MS patients at risk of relapses during pregnancy and the postpartum period.


Subject(s)
Multiple Sclerosis , Fatty Acids, Volatile , Female , Humans , Odds Ratio , Pregnancy , Prospective Studies , Recurrence
6.
J Allergy Clin Immunol ; 147(5): 1652-1661.e1, 2021 05.
Article in English | MEDLINE | ID: mdl-33662370

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a highly variable condition. Validated tools to assist in the early detection of patients at high risk of mortality can help guide medical decisions. OBJECTIVE: We sought to validate externally, as well as in patients from the second pandemic wave in Europe, our previously developed mortality prediction model for hospitalized COVID-19 patients. METHODS: Three validation cohorts were generated: 2 external with 185 and 730 patients from the first wave and 1 internal with 119 patients from the second wave. The probability of death was calculated for all subjects using our prediction model, which includes peripheral blood oxygen saturation/fraction of inspired oxygen ratio, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, IL-6, and age. Discrimination and calibration were evaluated in the validation cohorts. The prediction model was updated by reestimating individual risk factor effects in the overall cohort (N = 1477). RESULTS: The mortality prediction model showed good performance in the external validation cohorts 1 and 2, and in the second wave validation cohort 3 (area under the receiver-operating characteristic curve, 0.94, 0.86, and 0.86, respectively), with excellent calibration (calibration slope, 0.86, 0.94, and 0.79; intercept, 0.05, 0.03, and 0.10, respectively). The updated model accurately predicted mortality in the overall cohort (area under the receiver-operating characteristic curve, 0.91), which included patients from both the first and second COVID-19 waves. The updated model was also useful to predict fatal outcome in patients without respiratory distress at the time of evaluation. CONCLUSIONS: This is the first COVID-19 mortality prediction model validated in patients from the first and second pandemic waves. The COR+12 online calculator is freely available to facilitate its implementation (https://utrero-rico.shinyapps.io/COR12_Score/).


Subject(s)
COVID-19 , Interleukin-6/immunology , Models, Immunological , SARS-CoV-2/immunology , Age Factors , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/immunology , COVID-19/mortality , Europe/epidemiology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Risk Factors
7.
J Clin Immunol ; 41(2): 315-323, 2021 02.
Article in English | MEDLINE | ID: mdl-33236261

ABSTRACT

Immunosuppression (IS) and autoimmune disease (AD) are prevalent in patients with severe coronavirus disease 2019 (COVID-19), but their impact on its clinical course is unknown. We investigated relationships between IS, AD, and outcomes in patients hospitalized with COVID-19. Data on consecutive admissions for COVID-19 were extracted retrospectively from medical records. Patients were assigned to one of four cohorts, according to whether or not they had an AD (AD and NAD) or were immunosuppressed (IS and NIS). The primary endpoint was development of severe acute respiratory distress syndrome (ARDS); secondary endpoints included death, and a composite of mechanical ventilation (MV) or death. A total of 789 patients were included: 569 (72.1%) male, 76 (9.6%) with an AD, and 63 (8.0%) with IS. Relative to the NIS-NAD cohort, patients in the IS-AD cohort had a significantly reduced risk of severe ARDS (adjusted hazard ratio [aHR] 0.42; 95% confidence interval [CI] 0.23-0.80; p = 0.008). No significant relationships between IS or AD status and either death or the composite of MV and death were identified, although a trend towards higher mortality was identified in the IS-NAD cohort (aHR vs NIS-NAD 1.71; 95% CI 0.94-3.12; p = 0.081). Patients in this cohort also had higher median serum levels of interleukin-6 compared with IS-AD patients (98.2 vs 21.6 pg/mL; p = 0.0328) and NIS-NAD patients (29.1 pg/mL; p = 0.0057). In conclusion, among patients hospitalized with COVID-19, those receiving immunosuppressive treatment for an AD may have a reduced risk of developing severe ARDS.


Subject(s)
Autoimmune Diseases/complications , Autoimmune Diseases/epidemiology , COVID-19/complications , COVID-19/epidemiology , Health Impact Assessment , Immunosuppression Therapy/adverse effects , SARS-CoV-2 , Aged , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Biomarkers , COVID-19/diagnosis , COVID-19/metabolism , Combined Modality Therapy , Comorbidity , Cytokines/metabolism , Female , Hospitalization , Humans , Immunosuppression Therapy/methods , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Retrospective Studies , Trauma Severity Indices , Treatment Outcome
8.
Eur J Immunol ; 50(5): 685-694, 2020 05.
Article in English | MEDLINE | ID: mdl-32012247

ABSTRACT

Syncytin-1 is the envelope protein of the human endogenous retrovirus W (HERV-W). It has been related to multiple sclerosis (MS) but its role in cellular immunity and its pathogenic mechanism in the autoimmune context are not fully understood. We analyzed syncytin-1 levels in peripheral blood mononuclear cells (PBMC) subsets from healthy donors, MS patients in relapse or remission, and patients with acute infections by flow cytometry. PBMC cultures were also prepared to analyze protein expression kinetics. MS patients had higher levels of syncytin-1 levels than controls. We found that syncytin-1 is elevated in monocytes during MS relapses and infections. Cells expressing syncytin-1, including monocytes, T and B lymphocytes, and NKs presented mainly an activated phenotype and, upon stimulation with LPS, its levels increased rapidly on antigen-presenting cells. Syncytin-1 ligation promoted the activation of monocytes, as demonstrated by the upregulation of CD80 and the nonclassical subset CD14low CD16+ . Our results suggest an important role for syncytin-1 in the activation of leukocytes. Given that the expression of syncytin-1 is upregulated in MS patients, this protein might be contributing to the autoimmune cascade in the disease.


Subject(s)
Endogenous Retroviruses/immunology , Gene Products, env/genetics , Monocytes/virology , Multiple Sclerosis/genetics , Multiple Sclerosis/virology , Pregnancy Proteins/genetics , Adult , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , B7-1 Antigen/genetics , B7-1 Antigen/immunology , Case-Control Studies , Endogenous Retroviruses/genetics , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Gene Products, env/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/immunology , Lipopolysaccharides/pharmacology , Male , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Pregnancy Proteins/immunology , Primary Cell Culture , Receptors, IgG/genetics , Receptors, IgG/immunology , Recurrence , Remission Induction , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/virology
9.
Eur J Clin Microbiol Infect Dis ; 40(4): 761-769, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33083917

ABSTRACT

Despite the increasing evidence of the benefit of corticosteroids for the treatment of moderate-severe coronavirus disease 2019 (COVID-19) patients, no data are available about the potential role of high doses of steroids for these patients. We evaluated the mortality, the risk of need for mechanical ventilation (MV), or death and the risk of developing a severe acute respiratory distress syndrome (ARDS) between high (HD) and standard doses (SD) among patients with a severe COVID-19. All consecutive confirmed COVID-19 patients admitted to a single center were selected, including those treated with steroids and an ARDS. Patients were allocated to the HD (≥ 250 mg/day of methylprednisolone) of corticosteroids or the SD (≤ 1.5 mg/kg/day of methylprednisolone) at discretion of treating physician. Five hundred seventy-three patients were included: 428 (74.7%) men, with a median (IQR) age of 64 (54-73) years. In the HD group, a worse baseline respiratory situation was observed and male gender, older age, and comorbidities were significantly more common. After adjusting by baseline characteristics, HDs were associated with a higher mortality than SD (adjusted OR 2.46, 95% CI 1.59-3.81, p < 0.001) and with an increased risk of needing MV or death (adjusted OR 2.35, p = 0.001). Conversely, the risk of developing a severe ARDS was similar between groups. Interaction analysis showed that HD increased mortality exclusively in elderly patients. Our real-world experience advises against exceeding 1-1.5 mg/kg/day of corticosteroids for severe COVID-19 with an ARDS, especially in older subjects. This reinforces the rationale of modulating rather than suppressing immune responses in these patients.


Subject(s)
COVID-19 Drug Treatment , Glucocorticoids/administration & dosage , Methylprednisolone/administration & dosage , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/mortality , Cohort Studies , Dose-Response Relationship, Drug , Female , Humans , Logistic Models , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
10.
Hum Mutat ; 41(7): 1308-1320, 2020 07.
Article in English | MEDLINE | ID: mdl-32196808

ABSTRACT

Although genome-wide association studies have identified a number of common variants associated with multiple sclerosis (MS) susceptibility, little is known about the relevance of rare variants. Here, we aimed to explore the role of rare variants in 14 MS risk genes (FCRL1, RGS1, TIMMDC1, HHEX, CXCR5, LTBR, TSFM, GALC, TRAF3, STAT3, TNFSF14, IFI30, CD40, and CYP24A1) by targeted resequencing in an Iberian population of 524 MS cases and 546 healthy controls. Four rare variants-enriched regions within CYP24A1, FCRL1, RGS1, and TRAF3 were identified as significantly associated with MS. Functional studies revealed significantly decreased regulator of G protein signaling 1 (RGS1) gene expression levels in peripheral blood mononuclear cells from MS patients with RGS1 rare variants compared to noncarriers, whereas no significant differences in gene expression were observed for CYP24A1, FCRL1, and TRAF3 between rare variants carriers and noncarriers. Immunophenotyping showed significant decrease in RGS1 expression in peripheral blood B lymphocytes from MS patients with RGS1 rare variants relative to noncarriers. Lastly, peripheral blood mononuclear cell from MS patients carrying RGS1 rare variants showed significantly lower induction of RGS1 gene expression by interferon-ß compared to MS patients lacking RGS1 variants. The presence of rare variants in RGS1 reinforce the ideas of high genetic heterogeneity and a role of rare variants in MS pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Multiple Sclerosis/genetics , B-Lymphocytes , Case-Control Studies , DNA Mutational Analysis , Humans , Leukocytes, Mononuclear , Membrane Proteins/genetics , RGS Proteins/genetics , Spain , TNF Receptor-Associated Factor 3/genetics , Vitamin D3 24-Hydroxylase/genetics
11.
Mult Scler ; 26(9): 1074-1082, 2020 08.
Article in English | MEDLINE | ID: mdl-31221001

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a disease in which biomarker identification is fundamental to predict response to treatments and to deliver the optimal drug to patients. We previously found an association between rs7298096, a polymorphism upstream to the NINJ2 gene, and the 4-year response to interferon-ß (IFNß) treatment in MS patients. OBJECTIVES: To analyse the association between rs7298096 and time to first relapse (TTFR) during IFNß therapy in MS patients and to better investigate its functional role. METHODS: Survival analysis was applied in three MS cohorts from different countries (n = 1004). We also studied the role of the polymorphism on gene expression using GTEx portal and a luciferase assay. We interrogated GEO datasets to explore the relationship between NINJ2 expression, IFNß and TTFR. RESULTS: Rs7298096AA patients show a shorter TTFR than rs7298096G-carriers (Pmeta-analysis = 3 × 10-4, hazard ratio = 1.41). Moreover, rs7298096AA is associated with a higher NINJ2 expression in blood (p = 7.0 × 10-6), which was confirmed in vitro (p = 0.009). Finally, NINJ2 expression is downregulated by IFNß treatment and related to TTFR. CONCLUSIONS: Rs7298096 could influence MS disease activity during IFNß treatment by modulating NINJ2 expression in blood. The gene encodes for an adhesion molecule involved in inflammation and endothelial cells activation, supporting its role in MS.


Subject(s)
Cell Adhesion Molecules, Neuronal , Interferon-beta , Multiple Sclerosis , Cell Adhesion Molecules, Neuronal/metabolism , Endothelial Cells , Humans , Interferon-beta/therapeutic use , Interferons , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Pharmacogenomic Testing
12.
J Neuroinflammation ; 16(1): 220, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31727077

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) have been reported as deregulated in active brain lesions derived from patients with multiple sclerosis (MS). In there, these post-transcriptional regulators may elicit very important effects but proper identification of miRNA candidates as potential biomarkers and/or therapeutic targets is scarcely available. OBJECTIVE: The aim of the study was to detect the presence of a set of candidate miRNAs in cell-free cerebrospinal fluid (CSF) and to determine their association with gadolinium-enhancing (Gd+) lesions in order to assess their value as biomarkers of MS activity. METHODS: Assessment of 28 miRNA candidates in cell-free CSF collected from 46 patients with MS (26 Gd+ and 20 Gd- patients) was performed by TaqMan assays and qPCR. Variations in their relative abundance were analyzed by the Mann-Whitney U test and further evaluated by receiver operating characteristic (ROC) analysis. Signaling pathways and biological functions of miRNAs were analyzed using bioinformatic tools (miRTarBase, Enrichr, REVIGO, and Cytoscape softwares). RESULTS: Seven out of 28 miRNA candidates were detected in at least 75% of CSF samples. Consistent increase of miR-21 and miR-146a/b was found in Gd+ MS patients. This increase was in parallel to the number of Gd+ lesions and neurofilament light chain (NF-L) levels. Gene Ontology enrichment analysis revealed that the target genes of these miRNAs are involved in biological processes of key relevance such as apoptosis, cell migration and proliferation, and in cytokine-mediated signaling pathways. CONCLUSION: Levels of miR-21 and miR-146a/b in cell-free CSF may represent valuable biomarkers to identify patients with active MS lesions.


Subject(s)
MicroRNAs/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Adult , Biomarkers/cerebrospinal fluid , Female , Humans , Male , Middle Aged , Up-Regulation , Young Adult
13.
Hum Mol Genet ; 24(19): 5619-27, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26152201

ABSTRACT

Several variants in strong linkage disequilibrium (LD) at the SP140 locus have been associated with multiple sclerosis (MS), Crohn's disease (CD) and chronic lymphocytic leukemia (CLL). To determine the causal polymorphism, we have integrated high-density data sets of expression quantitative trait loci (eQTL), using GEUVADIS RNA sequences and 1000 Genomes genotypes, with MS-risk variants of the high-density Immunochip array performed by the International Multiple Sclerosis Genetic Consortium (IMSGC). The variants most associated with MS were also correlated with a decreased expression of the full-length RNA isoform of SP140 and an increase of an isoform lacking exon 7. By exon splicing assay, we have demonstrated that the rs28445040 variant was the causal factor for skipping of exon 7. Western blots of peripheral blood mononuclear cells from MS patients showed a significant allele-dependent reduction of the SP140 protein expression. To confirm the association of this functional variant with MS and to compare it with the best-associated variant previously reported by GWAS (rs10201872), a case-control study including 4384 MS patients and 3197 controls was performed. Both variants, in strong LD (r(2) = 0.93), were found similarly associated with MS [P-values, odds ratios: 1.9E-9, OR = 1.35 (1.22-1.49) and 4.9E-10, OR = 1.37 (1.24-1.51), respectively]. In conclusion, our data uncover the causal variant for the SP140 locus and the molecular mechanism associated with MS risk. In addition, this study and others previously reported strongly suggest that this functional variant may be shared with other immune-mediated diseases as CD and CLL.


Subject(s)
Antigens, Nuclear/blood , Antigens, Nuclear/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Transcription Factors/blood , Transcription Factors/genetics , Case-Control Studies , Exons , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Multiple Sclerosis/blood , Quantitative Trait Loci , Sequence Analysis, RNA
14.
Clin Immunol ; 181: 43-50, 2017 08.
Article in English | MEDLINE | ID: mdl-28578025

ABSTRACT

Delay in the diagnosis of multiple sclerosis (MS) stems from the lack of specific clinical and analytical markers to assist in the early diagnosis and prediction of progressive course. We propose a decision-tree model that better defines early at onset MS patients and those with the progressive form by analysing a 12-biomarkers panel in serum and CSF samples of patients with MS, other neurological diseases (OND) and healthy contols. Thus, patients at onset of neurological disease were first classified by serum IL-7 levels <141pg/ml (OR=6.51, p<0.001). Combination of IL-7 and CXCL10 indicated risk for a specific MS clinical form, where IL-7<141 and CXCL10<570pg/ml were associated with the highest risk for PP-MS (OR=22, p=0.01). Unexpectedly, both PP-MS and RR-MS patients shared significantly decreased prototypical biomarkers of inflammation and tissue regeneration in CSF than OND suggesting a defective intrinsic immune response playing a role at the beginning of the disease.


Subject(s)
Multiple Sclerosis, Chronic Progressive/diagnosis , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Area Under Curve , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Chemokine CCL11 , Chemokine CCL2 , Chemokine CCL4 , Chemokine CCL5 , Chemokine CXCL10/blood , Chemokine CXCL10/cerebrospinal fluid , Chemokine CXCL9/blood , Chemokine CXCL9/cerebrospinal fluid , Decision Trees , Dipeptidyl Peptidase 4/blood , Dipeptidyl Peptidase 4/cerebrospinal fluid , Early Diagnosis , Epidermal Growth Factor , Fibroblast Growth Factor 2/blood , Fibroblast Growth Factor 2/cerebrospinal fluid , Hepatocyte Growth Factor , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/cerebrospinal fluid , Interleukin-7/blood , Interleukin-7/cerebrospinal fluid , Multiple Sclerosis, Chronic Progressive/blood , Multiple Sclerosis, Chronic Progressive/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multivariate Analysis , Nervous System Diseases/blood , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis , Prognosis , Risk Assessment
15.
EMBO J ; 31(18): 3704-17, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22903061

ABSTRACT

Understanding the cellular origin of cancer can help to improve disease prevention and therapeutics. Human plasma cell neoplasias are thought to develop from either differentiated B cells or plasma cells. However, when the expression of Maf oncogenes (associated to human plasma cell neoplasias) is targeted to mouse B cells, the resulting animals fail to reproduce the human disease. Here, to explore early cellular changes that might take place in the development of plasma cell neoplasias, we engineered transgenic mice to express MafB in haematopoietic stem/progenitor cells (HS/PCs). Unexpectedly, we show that plasma cell neoplasias arise in the MafB-transgenic mice. Beyond their clinical resemblance to human disease, these neoplasias highly express genes that are known to be upregulated in human multiple myeloma. Moreover, gene expression profiling revealed that MafB-expressing HS/PCs were more similar to B cells and tumour plasma cells than to any other subset, including wild-type HS/PCs. Consistent with this, genome-scale DNA methylation profiling revealed that MafB imposes an epigenetic program in HS/PCs, and that this program is preserved in mature B cells of MafB-transgenic mice, demonstrating a novel molecular mechanism involved in tumour initiation. Our findings suggest that, mechanistically, the haematopoietic progenitor population can be the target for transformation in MafB-associated plasma cell neoplasias.


Subject(s)
Gene Expression Regulation, Neoplastic , MafB Transcription Factor/metabolism , Multiple Myeloma/metabolism , Animals , Antigens, CD34/biosynthesis , Antigens, Ly/metabolism , B-Lymphocytes/metabolism , DNA Methylation , DNA, Complementary/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Library , Hematopoietic Stem Cells/cytology , Humans , In Situ Hybridization, Fluorescence , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Multiple Myeloma/genetics , Translocation, Genetic
16.
Mult Scler ; 21(9): 1104-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25392328

ABSTRACT

BACKGROUND: Recent findings have shown a correlation between the intrathecal IgG index and variants at the immunoglobulin heavy chain (IGHC) locus in patients with multiple sclerosis (MS). OBJECTIVES: The objective of this paper is to analyse the association of the locus with MS susceptibility and its relationship with intrathecal immunoglobulin (Ig) parameters. METHODS: We genotyped the rs11621145 variant, located at the IGHC locus, in 2726 patients with MS and 2133 healthy controls. Associations of intrathecal IgG and IgM indexes with rs11621145 were analysed by linear regression analysis in 538 MS patients. RESULTS: We found that rs11621145 showed statistically significant evidence for association with susceptibility to MS (odds ratio = 0.69, p = 1.053E-09), though validation of this result in additional cohorts would be desirable. We confirmed the association between the IgG index and the rs11621145 (p = 6.85E-07, Beta = 0.207). Furthermore, rs11621145 was inversely correlated with IgM index (p = 7.24E-04, Beta = -0.277), and therefore marks a decreased likelihood of presenting IgM oligoclonal bands (odds ratio = 0.38, p = 2.35E-06). CONCLUSIONS: Our results suggest that the polymorphism of the IGHC locus could be altering the switching of the Ig isotype in B cells and it may be interfering with T-dependent and T-independent antibody responses.


Subject(s)
Genes, Immunoglobulin Heavy Chain/genetics , Genetic Predisposition to Disease/genetics , Multiple Sclerosis/genetics , Adult , Female , Genetic Loci , Genotype , Humans , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin M/cerebrospinal fluid , Isoelectric Focusing , Male , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/immunology , Oligoclonal Bands/cerebrospinal fluid , Polymorphism, Single Nucleotide
17.
J Neuroinflammation ; 11: 181, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25406498

ABSTRACT

BACKGROUND: In a previous proteomics study using pooled cerebrospinal fluid (CSF) samples, we proposed apolipoprotein AI, apolipoprotein AIV, vitronectin, plasminogen, semaphorin 7A, and ala-ß-his-dipeptidase as candidate biomarkers associated with the conversion to clinically definite multiple sclerosis (CDMS) in patients with clinically isolated syndromes (CIS). Here, we aimed to validate these results in individual CSF samples using alternative techniques. METHODS: In a first replication study, levels of apolipoproteins AI and AIV, vitronectin, and plasminogen were measured by ELISA in CSF and serum of 56 CIS patients (29 patients who converted to CDMS (MS converters) and 27 patients who remained with CIS during follow-up (MS non-converters)) and 26 controls with other neurological disorders. Semaphorin 7A and ala-ß-his-dipeptidase levels were determined by selected reaction monitoring (SRM) in CSF of 36 patients (18 MS converters, 18 non-converters) and 20 controls. In a second replication study, apolipoprotein AI levels were measured by ELISA in CSF of 74 CIS patients (47 MS converters, 27 non-converters) and 50 individual controls, and levels of semaphorin 7A and ala-beta-his-dipeptidase were determined by SRM in 49 patients (24 MS converters, 25 non-converters) and 22 controls. RESULTS: CSF levels of apolipoprotein AI were increased (P = 0.043) and levels of semaphorin 7A and ala-ß-his-dipeptidase decreased (P = 4.4 × 10(-10) and P = 0.033 respectively) in MS converters compared to non-converters. No significant differences were found in serum levels for apolipoproteins AI and AIV, vitronectin, and plasminogen. Findings with semaphorin 7A and ala-ß-his-dipeptidase were also validated in the second replication study, and CSF levels for these two proteins were again decreased in MS converters versus non-converters (P = 1.2 × 10(-4) for semaphorin 7A; P = 3.7 × 10(-8) for ala-ß-his-dipeptidase). Conversely, apolipoprotein AI findings were not replicated and CSF levels for this protein did not significantly differ between groups. Furthermore, CSF semaphorin 7A levels were negatively associated with the number of T2 lesions at baseline and one-year follow-up. CONCLUSIONS: These results validate previous findings for semaphorin 7A and ala-ß-his-dipeptidase, and suggest that these proteins play a role as CSF biomarkers associated with the conversion to CDMS in CIS patients.


Subject(s)
Antigens, CD/cerebrospinal fluid , Demyelinating Diseases/cerebrospinal fluid , Dipeptidases/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Semaphorins/cerebrospinal fluid , Adult , Biomarkers/cerebrospinal fluid , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , GPI-Linked Proteins/cerebrospinal fluid , Humans , Male , Middle Aged
18.
Front Public Health ; 12: 1397845, 2024.
Article in English | MEDLINE | ID: mdl-38711771

ABSTRACT

Introduction: Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that represents a leading cause of non-traumatic disability among young and middle-aged adults. MS is characterized by neurodegeneration caused by axonal injury. Current clinical and radiological markers often lack the sensitivity and specificity required to detect inflammatory activity and neurodegeneration, highlighting the need for better approaches. After neuronal injury, neurofilament light chains (NfL) are released into the cerebrospinal fluid, and eventually into blood. Thus, blood-based NfL could be used as a potential biomarker for inflammatory activity, neurodegeneration, and treatment response in MS. The objective of this study was to determine the value contribution of blood-based NfL as a biomarker in MS in Spain using the Multi-Criteria Decision Analysis (MCDA) methodology. Materials and methods: A literature review was performed, and the results were synthesized in the evidence matrix following the criteria included in the MCDA framework. The study was conducted by a multidisciplinary group of six experts. Participants were trained in MCDA and scored the evidence matrix. Results were analyzed and discussed in a group meeting through reflective MCDA discussion methodology. Results: MS was considered a severe condition as it is associated with significant disability. There are unmet needs in MS as a disease, but also in terms of biomarkers since no blood biomarker is available in clinical practice to determine disease activity, prognostic assessment, and response to treatment. The results of the present study suggest that quantification of blood-based NfL may represent a safe option to determine inflammation, neurodegeneration, and response to treatments in clinical practice, as well as to complement data to improve the sensitivity of the diagnosis. Participants considered that blood-based NfL could result in a lower use of expensive tests such as magnetic resonance imaging scans and could provide cost-savings by avoiding ineffective treatments. Lower indirect costs could also be expected due to a lower impact of disability consequences. Overall, blood-based NfL measurement is supported by high-quality evidence. Conclusion: Based on MCDA methodology and the experience of a multidisciplinary group of six stakeholders, blood-based NfL measurement might represent a high-value-option for the management of MS in Spain.


Subject(s)
Biomarkers , Decision Support Techniques , Multiple Sclerosis , Neurofilament Proteins , Humans , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis , Multiple Sclerosis/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Spain , Adult , Female , Middle Aged , Male
19.
Front Immunol ; 15: 1384411, 2024.
Article in English | MEDLINE | ID: mdl-38911861

ABSTRACT

Background: Although fingolimod, a sphingosine 1-phosphate receptor agonist, has shown to be an effective treatment reducing relapse rate and also slowing down the disability progression in relapsing-remitting multiple sclerosis (RRMS) patients, it is important to quickly identify those suboptimal responders. Objective: The main objective was to assess different clinical, radiological, genetic and environmental factors as possible early predictors of response in MS patients treated with fingolimod for 24 months. The secondary objective was to analyze the possible contribution of the environmental factors analyzed to the progression and activity of the disease along the 2-years of follow-up. Methods: A retrospective study with 151 patients diagnosed with MS, under fingolimod treatment for 24 months, with serum samples at initiation and six months later, and with clinical and radiological data at initiation and 24 months later, were included in the study. Clinical and radiological variables were collected to establish NEDA-3 (no evidence of disease activity: patients without relapses, disability progression and new T2 lesions or Gd+ lesions) and EDA (evidence of disease activity: patients with relapses and/or progression and/or new T2 lesions or gadolinium-positive [Gd+] lesions) conditions. Human leukocyte antigen II (HLA-II), EBNA-1 IgG and VCA IgG from Epstein-Barr virus (EBV) and antibody titers against Human herpesvirus 6A/B (HHV-6A/B) were also analyzed. Results: A total of 151 MS patients fulfilled the inclusion criteria: 27.8% was NEDA-3 (37.5% among those previously treated with high efficacy therapies >24 months). The following early predictors were statistically significantly associated with NEDA-3 condition: sex (male; p=0.002), age at baseline (older; p=0.009), relapses 2-years before fingolimod initiation ≤1 (p=0.010), and absence of Gd+ lesions at baseline (p=0.006). Regarding the possible contribution of the environmental factors included in the study to the activity or the progression of the disease, we only found that EBNA-1 IgG titers decreased in 20.0% of PIRA (progression independent from relapse activity) patients vs. 73.3% of RAW (relapse-associated worsening) patients (p=0.006; O.R. = 11.0). Conclusion: MS patients that are male, older, and with a low clinical and radiological activity at fingolimod initiation have a greater probability to reach NEDA-3 condition after two years with this therapy. An intriguing association of EBV with the progression of the disease has also been described, but it should be further study in a larger cohort to confirm these results.


Subject(s)
Disease Progression , Epstein-Barr Virus Nuclear Antigens , Fingolimod Hydrochloride , Immunoglobulin G , Humans , Fingolimod Hydrochloride/therapeutic use , Female , Male , Adult , Epstein-Barr Virus Nuclear Antigens/immunology , Retrospective Studies , Immunoglobulin G/blood , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Treatment Outcome , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/blood
20.
Mult Scler Relat Disord ; 86: 105595, 2024 06.
Article in English | MEDLINE | ID: mdl-38598952

ABSTRACT

INTRODUCTION: Continuously acquired smartphone keyboard interactions may be useful to monitor progression in multiple sclerosis (MS). We aimed to study the correlation between tapping speed (TS), measured as keys/s, and baseline disability scales in patients with MS. METHODS: Single-center prospective study in patients with MS. We passively assessed TS during first week, measured by an "in house" smartphone application. Reliability was assessed by intraclass correlation coefficient (ICC). Correlations between median and maximum keys/s of first week of assessment and baseline disability measures were explored. RESULTS: One-hundred three patients were included: 62.1 % women, with a median (IQR) age of 47 (40.4-54.8) years-old and an EDSS score of 3.0 (2.0-4.0). Distribution by MS subtypes was: 77.7 % relapsing-remitting MS (RRMS), 17.5 % secondary-progressive MS (SPMS) and 4.9 % primary-progressive MS (PPMS). ICC during first week was 0.714 (p < 0.00001). Both median and maximum keys/s showed a negative correlation with Expanded Disability Status Score, 9-hole peg test and timed 25-foot walk and a positive correlation with Processing Speed Test CogEval® raw and Z-score. Median and maximum keys/s were lower in patients diagnosed with SPMS than in RRMS. Both measures of tapping speed were associated with MS phenotype independently of age. CONCLUSION: TS measured through our application is reliable and correlates with baseline disability scales.


Subject(s)
Multiple Sclerosis , Smartphone , Humans , Female , Male , Middle Aged , Adult , Prospective Studies , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnosis , Disability Evaluation , Reproducibility of Results , Disease Progression , Mobile Applications , Multiple Sclerosis, Chronic Progressive/physiopathology , Multiple Sclerosis, Chronic Progressive/diagnosis , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL