Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 562(7728): 532-537, 2018 10.
Article in English | MEDLINE | ID: mdl-30305736

ABSTRACT

Probiotic nutrition is frequently claimed to improve human health. In particular, live probiotic bacteria obtained with food are thought to reduce intestinal colonization by pathogens, and thus to reduce susceptibility to infection. However, the mechanisms that underlie these effects remain poorly understood. Here we report that the consumption of probiotic Bacillus bacteria comprehensively abolished colonization by the dangerous pathogen Staphylococcus aureus in a rural Thai population. We show that a widespread class of Bacillus lipopeptides, the fengycins, eliminates S. aureus by inhibiting S. aureus quorum sensing-a process through which bacteria respond to their population density by altering gene regulation. Our study presents a detailed molecular mechanism that underlines the importance of probiotic nutrition in reducing infectious disease. We also provide evidence that supports the biological significance of probiotic bacterial interference in humans, and show that such interference can be achieved by blocking a pathogen's signalling system. Furthermore, our findings suggest a probiotic-based method for S. aureus decolonization and new ways to fight S. aureus infections.


Subject(s)
Bacillus/physiology , Probiotics/pharmacology , Quorum Sensing/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Animals , Female , Lipopeptides/biosynthesis , Lipopeptides/metabolism , Lipopeptides/pharmacology , Mice , Models, Animal , Probiotics/therapeutic use , Signal Transduction/drug effects , Spores, Bacterial/metabolism , Staphylococcus aureus/metabolism , Thailand
2.
Nature ; 503(7476): 397-401, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24172897

ABSTRACT

Atopic dermatitis is a chronic inflammatory skin disease that affects 15-30% of children and approximately 5% of adults in industrialized countries. Although the pathogenesis of atopic dermatitis is not fully understood, the disease is mediated by an abnormal immunoglobulin-E immune response in the setting of skin barrier dysfunction. Mast cells contribute to immunoglobulin-E-mediated allergic disorders including atopic dermatitis. Upon activation, mast cells release their membrane-bound cytosolic granules leading to the release of several molecules that are important in the pathogenesis of atopic dermatitis and host defence. More than 90% of patients with atopic dermatitis are colonized with Staphylococcus aureus in the lesional skin whereas most healthy individuals do not harbour the pathogen. Several staphylococcal exotoxins can act as superantigens and/or antigens in models of atopic dermatitis. However, the role of these staphylococcal exotoxins in disease pathogenesis remains unclear. Here we report that culture supernatants of S. aureus contain potent mast-cell degranulation activity. Biochemical analysis identified δ-toxin as the mast cell degranulation-inducing factor produced by S. aureus. Mast cell degranulation induced by δ-toxin depended on phosphoinositide 3-kinase and calcium (Ca(2+)) influx; however, unlike that mediated by immunoglobulin-E crosslinking, it did not require the spleen tyrosine kinase. In addition, immunoglobulin-E enhanced δ-toxin-induced mast cell degranulation in the absence of antigen. Furthermore, S. aureus isolates recovered from patients with atopic dermatitis produced large amounts of δ-toxin. Skin colonization with S. aureus, but not a mutant deficient in δ-toxin, promoted immunoglobulin-E and interleukin-4 production, as well as inflammatory skin disease. Furthermore, enhancement of immunoglobulin-E production and dermatitis by δ-toxin was abrogated in Kit(W-sh/W-sh) mast-cell-deficient mice and restored by mast cell reconstitution. These studies identify δ-toxin as a potent inducer of mast cell degranulation and suggest a mechanistic link between S. aureus colonization and allergic skin disease.


Subject(s)
Bacterial Toxins/metabolism , Cell Degranulation , Dermatitis, Atopic/microbiology , Mast Cells/cytology , Staphylococcus aureus/pathogenicity , Animals , Bacterial Toxins/pharmacology , Calcium Signaling/drug effects , Cell Degranulation/drug effects , Culture Media, Conditioned/pharmacology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Immunoglobulin E/biosynthesis , Immunoglobulin E/immunology , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interleukin-4/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mast Cells/drug effects , Mice , Phosphatidylinositol 3-Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Staphylococcus aureus/metabolism , Syk Kinase
3.
Mol Cell ; 32(1): 150-8, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18851841

ABSTRACT

Cell-density-dependent gene regulation by quorum-sensing systems has a crucial function in bacterial physiology and pathogenesis. We demonstrate here that the Staphylococcus aureus agr quorum-sensing regulon is divided into (1) control of metabolism and PSM cytolysin genes, which occurs independently of the small regulatory RNA RNAIII, and (2) RNAIII-dependent control of additional virulence genes. Remarkably, PSM expression was regulated by direct binding of the AgrA response regulator. Our findings suggest that quorum-sensing regulation of PSMs was established before wide-ranging control of virulence was added to the agr regulon, which likely occurred by development of the RNAIII-encoding region around the gene encoding the PSM delta-toxin. Moreover, the agr regulon in the community-associated methicillin-resistant S. aureus MW2 considerably differed from that previously determined using laboratory strains. By establishing a two-level model of quorum-sensing target gene regulation in S. aureus, our study gives important insight into the evolution of virulence control in this leading human pathogen.


Subject(s)
Bacterial Proteins/physiology , Genes, Bacterial , RNA, Bacterial/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Trans-Activators/physiology , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Base Sequence , DNA, Bacterial/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Humans , Methicillin Resistance/genetics , Models, Biological , Molecular Sequence Data , Promoter Regions, Genetic , Quorum Sensing/genetics , Quorum Sensing/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Virulence/genetics , Virulence/physiology
4.
J Infect Dis ; 211(3): 472-80, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25139021

ABSTRACT

Community-associated (CA) infections with methicillin-resistant Staphylococcus aureus (MRSA) are on a global rise. However, analysis of virulence characteristics has been limited almost exclusively to the US endemic strain USA300. CA-MRSA strains that do not produce Panton-Valentine leukocidin (PVL) have not been investigated on a molecular level. Therefore, we analyzed virulence determinants in a PVL-negative CA-MRSA strain, ST72, from Korea. Genome-wide analysis identified 3 loci that are unique to that strain, but did not affect virulence. In contrast, phenol-soluble modulins (PSMs) and the global virulence regulator Agr strongly affected lysis of neutrophils and erythrocytes, while α-toxin and Agr had a major impact on in vivo virulence. Our findings substantiate the general key roles these factors play in CA-MRSA virulence. However, our analyses also showed noticeable differences to strain USA300, inasmuch as α-toxin emerged as a much more important factor than PSMs in experimental skin infection caused by ST72.


Subject(s)
Bacterial Toxins/genetics , Community-Acquired Infections/microbiology , Exotoxins/genetics , Leukocidins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Virulence Factors/genetics , Virulence/genetics , Erythrocytes/microbiology , Genome-Wide Association Study , Hemolysin Proteins , Neutrophils/microbiology , Republic of Korea
5.
Infect Immun ; 84(3): 723-34, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26712209

ABSTRACT

Staphylococcus aureus is an important human pathogen that can cause two categories of severe infections. Acute infections are characterized by pronounced toxin production, while chronic infections often involve biofilm formation. However, it is poorly understood how S. aureus controls the expression of genes associated with acute versus biofilm-associated virulence. We here identified an AraC-type transcriptional regulator, Rsp, that promotes the production of key toxins while repressing major biofilm-associated genes and biofilm formation. Genome-wide transcriptional analysis and modeling of regulatory networks indicated that upregulation of the accessory gene regulator (Agr) and downregulation of the ica operon coding for the biofilm exopolysaccharide polysaccharide intercellular adhesin (PIA) were central to the regulatory impact of Rsp on virulence. Notably, the Rsp protein directly bound to the agrP2 and icaADBC promoters, resulting in strongly increased levels of the Agr-controlled toxins phenol-soluble modulins (PSMs) and alpha-toxin and reduced production of PIA. Accordingly, Rsp was essential for the development of bacteremia and skin infection, representing major types of acute S. aureus infection. Our findings give important insight into how S. aureus adapts the expression of its broad arsenal of virulence genes to promote different types of disease manifestations and identify the Rsp regulator as a potential target for strategies to control acute S. aureus infection.


Subject(s)
AraC Transcription Factor/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , AraC Transcription Factor/metabolism , Bacterial Proteins/genetics , Humans , Promoter Regions, Genetic , Staphylococcus aureus/genetics
6.
Infect Immun ; 83(7): 2966-75, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25964472

ABSTRACT

Staphylococcus aureus is a leading cause of prosthetic joint infections, which, as we recently showed, proceed with the involvement of biofilm-like clusters that cause recalcitrance to antibiotic treatment. Here we analyzed why these clusters grow extraordinarily large, reaching macroscopically visible extensions (>1 mm). We found that while specific S. aureus surface proteins are a prerequisite for agglomeration in synovial fluid, low activity of the Agr regulatory system and subsequent low production of the phenol-soluble modulin (PSM) surfactant peptides cause agglomerates to grow to exceptional dimensions. Our results indicate that PSMs function by disrupting interactions of biofilm matrix molecules, such as the polysaccharide intercellular adhesin (PIA), with the bacterial cell surface. Together, our findings support a two-step model of staphylococcal prosthetic joint infection: As we previously reported, interaction of S. aureus surface proteins with host matrix proteins such as fibrin initiates agglomeration; our present results show that, thereafter, the bacterial agglomerates grow to extremely large sizes owing to the lack of PSM expression under the specific conditions present in joints. Our findings provide a mechanistic explanation for the reported extreme resistance of joint infection to antibiotic treatment, lend support to the notions that Agr functionality and PSM production play a major role in defining different forms of S. aureus infection, and have important implications for antistaphylococcal therapeutic strategies.


Subject(s)
Bacterial Toxins/metabolism , Biofilms/growth & development , Staphylococcus aureus/physiology , Synovial Fluid/microbiology , Humans , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Surface-Active Agents/metabolism
7.
Int J Med Microbiol ; 304(5-6): 637-44, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24877726

ABSTRACT

Several methicillin resistance (SCCmec) clusters characteristic of hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains harbor the psm-mec locus. In addition to encoding the cytolysin, phenol-soluble modulin (PSM)-mec, this locus has been attributed gene regulatory functions. Here we employed genome-wide transcriptional profiling to define the regulatory function of the psm-mec locus. The immune evasion factor protein A emerged as the primary conserved and strongly regulated target of psm-mec, an effect we show is mediated by the psm-mec RNA. Furthermore, the psm-mec locus exerted regulatory effects that were more moderate in extent. For example, expression of PSM-mec limited expression of mecA, thereby decreasing methicillin resistance. Our study shows that the psm-mec locus has a rare dual regulatory RNA and encoded cytolysin function. Furthermore, our findings reveal a specific mechanism underscoring the recently emerging concept that S. aureus strains balance pronounced virulence and high expression of antibiotic resistance.


Subject(s)
Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , RNA, Small Interfering/metabolism , Bacterial Proteins/biosynthesis , Bacterial Toxins/biosynthesis , Gene Expression Profiling , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Penicillin-Binding Proteins , RNA, Small Interfering/genetics , Staphylococcal Infections/microbiology , Staphylococcal Protein A/biosynthesis
8.
Proc Natl Acad Sci U S A ; 108(44): 18091-6, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22025717

ABSTRACT

Staphylococcus aureus is a bacterial pathogen known to cause infections in epidemic waves. One such epidemic was caused by a clone known as phage-type 80/81, a penicillin-resistant strain that rose to world prominence in the late 1950s. The molecular underpinnings of the phage-type 80/81 outbreak have remained unknown for decades, nor is it understood why related S. aureus clones became epidemic in hospitals in the early 1990s. To better understand the molecular basis of these epidemics, we sequenced the genomes of eight S. aureus clinical isolates representative of the phage-type 80/81 clone, the Southwest Pacific clone [a community-associated methicillin-resistant S. aureus (MRSA) clone], and contemporary S. aureus clones, all of which are genetically related and belong to the same clonal complex (CC30). Genome sequence analysis revealed that there was coincident divergence of these clones from a recent common ancestor, a finding that resolves controversy about the evolutionary history of the lineage. Notably, we identified nonsynonymous SNPs in genes encoding accessory gene regulator C (agrC) and α-hemolysin (hla)--molecules important for S. aureus virulence--that were present in virtually all contemporary CC30 hospital isolates tested. Compared with the phage-type 80/81 and Southwest Pacific clones, contemporary CC30 hospital isolates had reduced virulence in mouse infection models, the result of SNPs in agrC and hla. We conclude that agr and hla (along with penicillin resistance) were essential for world dominance of phage-type 80/81 S. aureus, whereas key SNPs in contemporary CC30 clones restrict these pathogens to hospital settings in which the host is typically compromised.


Subject(s)
Bacteriophages/classification , Staphylococcal Infections/epidemiology , Staphylococcus aureus/virology , Bacteriophages/genetics , Disease Outbreaks , Genome, Bacterial , Genome, Viral , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence
9.
Comp Med ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941053

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) remains a significant problem for human and animal health and can negatively affect the health status of macaques and other nonhuman primates (NHP) in research colonies. However, few publications provide guidance on the prevalence, genotype, or risk factors for macaques with MRSA and even fewer on how to effectively respond to MRSA once identified in a population. After having a clinical case of MRSA in a rhesus macaque, we sought to determine the MRSA carrier prevalence, risk factors, and genotypes of MRSA in a population of research NHPs. Over a 6-wk period in 2015, we collected nasal swabs from 298 NHPs. MRSA was isolated from 28% (n = 83). We then reviewed each macaque's medical record for a variety of variables including animal housing room, sex, age, number of antibiotic courses, number of surgical interventions, and SIV status. Analysis of these data suggests that MRSA carriage is associated with the room location, age of the animal, SIV status, and the number of antibiotic courses. We used multilocus sequence typing and spa typing on a subset of MRSA and MSSA isolates to determine whether the MRSA present in NHPs was comparable with common human strains. Two MRSA sequence types were predominant: ST188 and a novel MRSA genotype, neither of which is a common human isolate in the United States. We subsequently implemented antimicrobial stewardship practices (significantly reducing antimicrobial use) and then resampled the colony in 2018 and found that MRSA carriage had fallen to 9% (26/285). These data suggest that, as in humans, macaques may have a high carrier status of MRSA despite low clinically apparent disease. Implementing strategic antimicrobial stewardship practices resulted in a marked reduction in MRSA carriage in the NHP colony, highlighting the importance of limiting antimicrobial use when possible.

11.
Proc Natl Acad Sci U S A ; 106(14): 5883-8, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19293374

ABSTRACT

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has recently emerged worldwide. The United States, in particular, is experiencing a serious epidemic of CA-MRSA that is almost entirely caused by an extraordinarily infectious strain named USA300. However, the molecular determinants underlying the pathogenic success of CA-MRSA are mostly unknown. To gain insight into the evolution of the exceptional potential of USA300 to cause disease, we compared the phylogeny and virulence of USA300 with that of closely related MRSA clones. We discovered that the sublineage from which USA300 evolved is characterized by a phenotype of high virulence that is clearly distinct from other MRSA strains. Namely, USA300 and its progenitor, USA500, had high virulence in animal infection models and the capacity to evade innate host defense mechanisms. Furthermore, our results indicate that increased virulence in the USA300/USA500 sublineage is attributable to differential expression of core genome-encoded virulence determinants, such as phenol-soluble modulins and alpha-toxin. Notably, the fact that the virulence phenotype of USA300 was already established in its progenitor indicates that acquisition of mobile genetic elements has played a limited role in the evolution of USA300 virulence and points to a possibly different role of those elements. Thus, our results highlight the importance of differential gene expression in the evolution of USA300 virulence. This finding calls for a profound revision of our notion about CA-MRSA pathogenesis at the molecular level and has important implications for design of therapeutics directed against CA-MRSA.


Subject(s)
Disease Outbreaks , Evolution, Molecular , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Phylogeny , Virulence/genetics , Animals , Gene Expression Regulation, Bacterial , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , United States
12.
Cell Host Microbe ; 30(3): 301-313.e9, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35123653

ABSTRACT

Previously either regarded as insignificant or feared as potential sources of infection, the bacteria living on our skin are increasingly recognized for their role in benefitting human health. Skin commensals modulate mucosal immune defenses and directly interfere with pathogens; however, their contribution to the skin's physical integrity is less understood. Here, we show that the abundant skin commensal Staphylococcus epidermidis contributes to skin barrier integrity. S. epidermidis secretes a sphingomyelinase that acquires essential nutrients for the bacteria and assists the host in producing ceramides, the main constituent of the epithelial barrier that averts skin dehydration and aging. In mouse models, S. epidermidis significantly increases skin ceramide levels and prevents water loss of damaged skin in a fashion entirely dependent on its sphingomyelinase. Our findings reveal a symbiotic mechanism that demonstrates an important role of the skin microbiota in the maintenance of the skin's protective barrier.


Subject(s)
Ceramides , Staphylococcus epidermidis , Animals , Homeostasis , Mice , Skin/microbiology , Symbiosis
13.
Front Immunol ; 13: 999201, 2022.
Article in English | MEDLINE | ID: mdl-36189200

ABSTRACT

In contrast to the virulent human skin commensal Staphylococcus aureus, which secretes a plethora of toxins, other staphylococci have much reduced virulence. In these species, commonly the only toxins are those of the phenol-soluble modulin (PSM) family. PSMs are species-specific and have only been characterized in a limited number of species. S. xylosus is a usually innocuous commensal on the skin of mice and other mammals. Prompted by reports on the involvement of PSMs in atopic dermatitis (AD) and the isolation of S. xylosus from mice with AD-like symptoms, we here identified and characterized PSMs of S. xylosus with a focus on a potential involvement in AD phenotypes. We found that most clinical S. xylosus strains produce two PSMs, one of the shorter α- and one of the longer ß-type, which were responsible for almost the entire lytic and pro-inflammatory capacities of S. xylosus. Importantly, PSMα of S. xylosus caused lysis and degranulation of mast cells at degrees higher than that of S. aureus δ-toxin, the main PSM previously associated with AD. However, S. xylosus did not produce significant AD symptoms in wild-type mice as opposed to S. aureus, indicating that promotion of AD by S. xylosus likely requires a predisposed host. Our study indicates that non-specific cytolytic potency rather than specific interaction underlies PSM-mediated mast cell degranulation and suggest that the previously reported exceptional potency of δ-toxin of S. aureus is due to its high-level production. Furthermore, they suggest that species that produce cytolytic PSMs, such as S. xylosus, all have the capacity to promote AD, but a high combined level of PSM cytolytic potency is required to cause AD in a non-predisposed host.


Subject(s)
Bacterial Toxins , Staphylococcus aureus , Animals , Bacterial Toxins/genetics , Humans , Mammals , Mice , Staphylococcus
14.
Nat Microbiol ; 7(1): 62-72, 2022 01.
Article in English | MEDLINE | ID: mdl-34873293

ABSTRACT

Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.


Subject(s)
Bacterial Toxins/immunology , Lymphocytes/immunology , Neutrophil Infiltration/immunology , Skin/immunology , Skin/microbiology , Staphylococcal Skin Infections/immunology , Staphylococcus aureus/immunology , Animals , Female , Humans , Intravital Microscopy/methods , Mice, Inbred C57BL , Staphylococcus aureus/pathogenicity , Virulence Factors
15.
Infect Immun ; 79(3): 1007-15, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21173311

ABSTRACT

Infections caused by the nosocomial pathogen Staphylococcus epidermidis frequently develop on implanted medical devices and involve biofilm formation. Biofilms are surface-attached microbial communities that show increased resistance to drug treatment and mechanisms of innate host defense. In this study, a mutant library of the clinical isolate S. epidermidis 1457 was constructed using mariner-based transposon mutagenesis. About a thousand mutants were screened, and 12 mutants were identified as significantly defective in biofilm formation. We focused on a mutant in which the transposon had inserted in a gene with unknown function, SERP0541, which is annotated as a gene encoding a GSP13-like general stress response protein. The gene was named ygs (encoding an unknown general stress protein). Various stresses, including heat, pH, high osmolarity, and ethanol affected the survival of the ygs mutant to a significantly higher degree than the wild-type strain and led to increased expression of ygs. Furthermore, synthesis of polysaccharide intercellular adhesin (PIA) and transcription of the PIA biosynthetic operon were significantly decreased in the ygs mutant. These results are in accordance with the putative involvement of ygs in stress-response gene regulation and indicate that ygs influences biofilm development by controlling PIA-dependent biofilm accumulation. Moreover, ygs had a significant impact on the formation of biofilms and metastatic disease in two catheter-related rat infection models. Our study shows that the ygs gene controls S. epidermidis biofilm accumulation and stress resistance, representing a key regulator of both structural and physiological biofilm characteristics with a significant impact on biofilm-associated infection.


Subject(s)
Biofilms , Genes, Bacterial/genetics , Staphylococcal Infections/genetics , Staphylococcus epidermidis/genetics , Stress, Physiological/genetics , Amino Acid Sequence , Animals , Catheter-Related Infections/genetics , Catheter-Related Infections/microbiology , Disease Models, Animal , Immunoblotting , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Polysaccharides, Bacterial/biosynthesis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
16.
Cell Host Microbe ; 29(6): 930-940.e4, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33852876

ABSTRACT

Staphylococcus aureus commonly infects the skin, but the host-pathogen interactions controlling bacterial growth remain unclear. S. aureus virulence is regulated by the Agr quorum-sensing system that controls factors including phenol-soluble modulins (PSMs), a group of cytotoxic peptides. We found a differential requirement for Agr and PSMα for pathogen growth in the skin. In neutrophil-deficient mice, S. aureus growth on the epidermis was unaffected, but the pathogen penetrated the dermis through mechanisms that require PSMα. In the dermis, pathogen expansion required Agr in wild-type mice, but not in neutrophil-deficient mice. Agr limited oxidative and non-oxidative killing in neutrophils by inhibiting pathogen late endosome localization and promoting phagosome escape. Unlike Agr, the SaeR/S virulence program was dispensable for growth in the epidermis and promoted dermal pathogen expansion independently of neutrophils. Thus, S. aureus growth and invasion are differentially regulated with Agr limiting intracellular killing within neutrophils to promote pathogen expansion in the dermis and subcutaneous tissue.


Subject(s)
Bacterial Proteins/metabolism , Neutrophils/physiology , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Staphylococcus aureus/pathogenicity , Trans-Activators/metabolism , Virulence , Animals , Bacterial Toxins/metabolism , Host-Pathogen Interactions , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Protein Kinases/metabolism , Quorum Sensing , Transcription Factors/metabolism
17.
Antimicrob Agents Chemother ; 54(10): 4208-18, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660682

ABSTRACT

Prosthetic joint replacements are used increasingly to alleviate pain and improve mobility of the progressively older and more obese population. Implant infection occurs in about 5% of patients and entails significant morbidity and high social costs. It is most often caused by staphylococci, which are introduced perioperatively. They are a source of prolonged seeding and difficult to treat due to antibiotic resistance; therefore, infection prevention by prosthesis coating with nonantibiotic-type anti-infective substances is indicated. A renewed interest in topically used silver has fostered development of silver nanoparticles, which, however, present a potential health hazard. Here we present new silver coordination polymer networks with tailored physical and chemical properties as nanostructured coatings on metallic implant substrates. These compounds exhibited strong biofilm sugar-independent bactericidal activity on in vitro-grown biofilms and prevented murine Staphylococcus epidermidis implant infection in vivo with slow release of silver ions and limited transient leukocyte cytotoxicity. Furthermore, we describe the biochemical and molecular mechanisms of silver ion action by gene screening and by targeting cell metabolism of S. epidermidis at different levels. We demonstrate that silver ions inactivate enzymes by binding sulfhydryl (thiol) groups in amino acids and promote the release of iron with subsequent hydroxyl radical formation by an indirect mechanism likely mediated by reactive oxygen species. This is the first report investigating the global metabolic effects of silver in the context of a therapeutic application. We anticipate that the compounds presented here open a new treatment field with a high medical impact.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Coated Materials, Biocompatible/therapeutic use , Hydroxyl Radical/metabolism , Implants, Experimental , Polymers/therapeutic use , Silver/therapeutic use , Staphylococcal Infections/prevention & control , Animals , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Electron Transport , Female , Mice , Mice, Inbred C57BL , Polymers/chemistry , Silver/chemistry , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/pathogenicity
18.
J Mol Biol ; 431(16): 3015-3027, 2019 07 26.
Article in English | MEDLINE | ID: mdl-30954574

ABSTRACT

Phenol-soluble modulins (PSMs) are amphipathic, alpha-helical peptides that are secreted by staphylococci in high amounts in a quorum-sensing-controlled fashion. Studies performed predominantly in Staphylococcus aureus showed that PSMs structure biofilms, which results in reduced biofilm mass, while it has also been reported that S. aureus PSMs stabilize biofilms due to amyloid formation. We here analyzed the roles of PSMs in in vitro and in vivo biofilms of Staphylococcus epidermidis, the leading cause of indwelling device-associated biofilm infection. We produced isogenic deletion mutants for every S. epidermidis psm locus and a sequential deletion mutant in which production of all PSMs was abolished. In vitro analysis substantiated the role of all PSMs in biofilm structuring. PSM-dependent biofilm expansion was not observed, in accordance with our finding that no S. epidermidis PSM produced amyloids. In a mouse model of indwelling device-associated infection, the total psm deletion mutant had a significant defect in dissemination. Notably, the total psm mutant produced a significantly more substantial biofilm on the implanted catheter than the wild-type strain. Our study, which for the first time directly quantified the impact of PSMs on biofilm expansion on an implanted device, shows that the in vivo biofilm infection phenotype in S. epidermidis is in accordance with the PSM biofilm structuring and detachment model, which has important implications for the potential therapeutic application of quorum-sensing blockers.


Subject(s)
Bacterial Toxins/metabolism , Biofilms/growth & development , Catheter-Related Infections/microbiology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/pathogenicity , Animals , Bacterial Toxins/genetics , Catheters, Indwelling/microbiology , Colony Count, Microbial , Disease Models, Animal , Humans , Mice , Sequence Deletion , Staphylococcus epidermidis/growth & development , Staphylococcus epidermidis/metabolism
19.
BMC Microbiol ; 8: 4, 2008 Jan 08.
Article in English | MEDLINE | ID: mdl-18182108

ABSTRACT

BACKGROUND: Autoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. RESULTS: To determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. CONCLUSION: Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Homoserine/analogs & derivatives , Lactones/metabolism , Staphylococcus epidermidis/genetics , Bacterial Proteins/isolation & purification , Biological Assay , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/isolation & purification , DNA, Bacterial , Homoserine/genetics , Homoserine/isolation & purification , Homoserine/metabolism , Lactones/isolation & purification , Mutation , Oligonucleotide Array Sequence Analysis , Quorum Sensing/genetics , Recombinant Fusion Proteins , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcus epidermidis/metabolism
20.
Article in English | MEDLINE | ID: mdl-28596942

ABSTRACT

Coagulase-negative staphylococci (CoNS) are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis, is Staphylococcus haemolyticus. However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus, as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus, toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs), amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis. Here, we identified, purified, and characterized PSMs of S. haemolyticus. We found three PSMs of the ß-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis.


Subject(s)
Bacterial Toxins/toxicity , Staphylococcal Infections/metabolism , Staphylococcus haemolyticus/metabolism , Staphylococcus haemolyticus/pathogenicity , Virulence Factors , Virulence , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/toxicity , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/isolation & purification , Hemolysin Proteins/toxicity , Hemolysis , Humans , Leukocidins/toxicity , Neutrophils/drug effects , Sepsis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus/pathogenicity , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/pathogenicity , Staphylococcus haemolyticus/genetics , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/isolation & purification , Virulence Factors/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL