Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Evol Comput ; : 1-28, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37390224

ABSTRACT

When it comes to solving optimization problems with evolutionary algorithms (EAs) in a reliable and scalable manner, detecting and exploiting linkage information, i.e., dependencies between variables, can be key. In this article, we present the latest version of, and propose substantial enhancements to, the Gene-pool Optimal Mixing Evoutionary Algorithm (GOMEA): an EA explicitly designed to estimate and exploit linkage information. We begin by performing a largescale search over several GOMEA design choices to understand what matters most and obtain a generally best-performing version of the algorithm. Next, we introduce a novel version of GOMEA, called CGOMEA, where linkage-based variation is further improved by filtering solution mating based on conditional dependencies. We compare our latest version of GOMEA, the newly introduced CGOMEA, and another contending linkage-aware EA, DSMGA-II, in an extensive experimental evaluation, involving a benchmark set of 9 black-box problems that can only be solved efficiently if their inherent dependency structure is unveiled and exploited. Finally, in an attempt to make EAs more usable and resilient to parameter choices, we investigate the performance of different automatic population management schemes for GOMEA and CGOMEA, de facto making the EAs parameterless. Our results show that GOMEA and CGOMEA significantly outperform the original GOMEA and DSMGA-II on most problems, setting a new state of the art for the field.

2.
J Radiol Prot ; 39(2): 598-619, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30965301

ABSTRACT

In retrospective radiation treatment (RT) dosimetry, a surrogate anatomy is often used for patients without 3D CT. To gain insight in what the crucial aspects in a surrogate anatomy are to enable accurate dose reconstruction, we investigated the relation of patient characteristics and internal anatomical features with deviations in reconstructed organ dose using surrogate patient's CT scans. Abdominal CT scans of 35 childhood cancer patients (age: 2.1-5.6 yr; 17 boys, 18 girls) undergoing RT during 2004-2016 were included. Based on whether an intact right or left kidney is present in the CT scan, two groups were formed each containing 24 patients. From each group, four CTs associated with Wilms' tumor RT plans with an anterior-posterior-posterior-anterior field setup were selected as references. For each reference, a 2D digitally reconstructed radiograph was computed from the reference CT to simulate a 2D radiographic image and dose reconstruction was performed on the other CTs in the respective group. Deviations in organ mean dose (DEmean) of the reconstructions versus the references were calculated, as were deviations in patient characteristics (i.e. age, height, weight) and in anatomical features including organ volume, location (in 3D), and spatial overlaps. Per reference, the Pearson's correlation coefficient between deviations in DEmean and patient characteristics/features were studied. Deviation in organ locations and DEmean for the liver, spleen, and right kidney were moderately correlated (R2 > 0.5) for 8/8, 5/8, and 3/4 reference plans, respectively. Deviations in organ volume or spatial overlap and DEmean for the right and left kidney were weakly correlated (0.3 < R2 < 0.5) in 4/4 and 1/4 reference plans. No correlations (R2 < 0.3) were found between deviations in age or height and DEmean. Therefore, the performance of organ dose reconstruction using surrogate patients' CT scans is primarily related to deviation in organ location, followed by volume and spatial overlap. Further, results were plan dependent.


Subject(s)
Kidney Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Wilms Tumor/radiotherapy , Child, Preschool , Correlation of Data , Female , Humans , Imaging, Three-Dimensional , Kidney/anatomy & histology , Kidney/diagnostic imaging , Liver/anatomy & histology , Liver/diagnostic imaging , Male , Radiometry , Retrospective Studies , Spleen/anatomy & histology , Spleen/diagnostic imaging
3.
Evol Intell ; : 1-13, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37360587

ABSTRACT

We investigate the differences between spoken language (in the form of radio show transcripts) and written language (Wikipedia articles) in the context of text classification. We present a novel, interpretable method for text classification, involving a linear classifier using a large set of n-gram features, and apply it to a newly generated data set with sentences originating either from spoken transcripts or written text. Our classifier reaches an accuracy less than 0.02 below that of a commonly used classifier (DistilBERT) based on deep neural networks (DNNs). Moreover, our classifier has an integrated measure of confidence, for assessing the reliability of a given classification. An online tool is provided for demonstrating our classifier, particularly its interpretable nature, which is a crucial feature in classification tasks involving high-stakes decision-making. We also study the capability of DistilBERT to carry out fill-in-the-blank tasks in either spoken or written text, and find it to perform similarly in both cases. Our main conclusion is that, with careful improvements, the performance gap between classical methods and DNN-based methods may be reduced significantly, such that the choice of classification method comes down to the need (if any) for interpretability.

4.
Adv Radiat Oncol ; 7(6): 101015, 2022.
Article in English | MEDLINE | ID: mdl-36060631

ABSTRACT

Purpose: Our purpose was to validate and compare the performance of 4 organ dose reconstruction approaches for historical radiation treatment planning based on 2-dimensional radiographs. Methods and Materials: We considered 10 patients with Wilms tumor with planning computed tomography images for whom we developed typical historic Wilms tumor radiation treatment plans, using anteroposterior and posteroanterior parallel-opposed 6 MV flank fields, normalized to 14.4 Gy. Two plans were created for each patient, with and without corner blocking. Regions of interest (lungs, heart, nipples, liver, spleen, contralateral kidney, and spinal cord) were delineated, and dose-volume metrics including organ mean and minimum dose (Dmean and Dmin) were computed as the reference baseline for comparison. Dosimetry for the 20 plans was then independently reconstructed using 4 different approaches. Three approaches involved surrogate anatomy, among which 2 used demographic-matching criteria for phantom selection/building, and 1 used machine learning. The fourth approach was also machine learning-based, but used no surrogate anatomies. Absolute differences in organ dose-volume metrics between the reconstructed and the reference values were calculated. Results: For Dmean and Dmin (average and minimum point dose) all 4 dose reconstruction approaches performed within 10% of the prescribed dose (≤1.4 Gy). The machine learning-based approaches showed a slight advantage for several of the considered regions of interest. For Dmax (maximum point dose), the absolute differences were much higher, that is, exceeding 14% (2 Gy), with the poorest agreement observed for near-beam and out-of-beam organs for all approaches. Conclusions: The studied approaches give comparable dose reconstruction results, and the choice of approach for cohort dosimetry for late effects studies should still be largely driven by the available resources (data, time, expertise, and funding).

5.
Adv Neural Inf Process Syst ; 2021(DB1): 1-16, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38715933

ABSTRACT

Many promising approaches to symbolic regression have been presented in recent years, yet progress in the field continues to suffer from a lack of uniform, robust, and transparent benchmarking standards. We address this shortcoming by introducing an open-source, reproducible benchmarking platform for symbolic regression. We assess 14 symbolic regression methods and 7 machine learning methods on a set of 252 diverse regression problems. Our assessment includes both real-world datasets with no known model form as well as ground-truth benchmark problems. For the real-world datasets, we benchmark the ability of each method to learn models with low error and low complexity relative to state-of-the-art machine learning methods. For the synthetic problems, we assess each method's ability to find exact solutions in the presence of varying levels of noise. Under these controlled experiments, we conclude that the best performing methods for real-world regression combine genetic algorithms with parameter estimation and/or semantic search drivers. When tasked with recovering exact equations in the presence of noise, we find that several approaches perform similarly. We provide a detailed guide to reproducing this experiment and contributing new methods, and encourage other researchers to collaborate with us on a common and living symbolic regression benchmark.

6.
J Med Imaging (Bellingham) ; 7(4): 046501, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32743017

ABSTRACT

Purpose: Current phantoms used for the dose reconstruction of long-term childhood cancer survivors lack individualization. We design a method to predict highly individualized abdominal three-dimensional (3-D) phantoms automatically. Approach: We train machine learning (ML) models to map (2-D) patient features to 3-D organ-at-risk (OAR) metrics upon a database of 60 pediatric abdominal computed tomographies with liver and spleen segmentations. Next, we use the models in an automatic pipeline that outputs a personalized phantom given the patient's features, by assembling 3-D imaging from the database. A step to improve phantom realism (i.e., avoid OAR overlap) is included. We compare five ML algorithms, in terms of predicting OAR left-right (LR), anterior-posterior (AP), inferior-superior (IS) positions, and surface Dice-Sørensen coefficient (sDSC). Furthermore, two existing human-designed phantom construction criteria and two additional control methods are investigated for comparison. Results: Different ML algorithms result in similar test mean absolute errors: ∼ 8 mm for liver LR, IS, and spleen AP, IS; ∼ 5 mm for liver AP and spleen LR; ∼ 80 % for abdomen sDSC; and ∼ 60 % to 65% for liver and spleen sDSC. One ML algorithm (GP-GOMEA) significantly performs the best for 6/9 metrics. The control methods and the human-designed criteria in particular perform generally worse, sometimes substantially ( + 5 - mm error for spleen IS, - 10 % sDSC for liver). The automatic step to improve realism generally results in limited metric accuracy loss, but fails in one case (out of 60). Conclusion: Our ML-based pipeline leads to phantoms that are significantly and substantially more individualized than currently used human-designed criteria.

7.
J Med Imaging (Bellingham) ; 7(1): 015001, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32042857

ABSTRACT

Performing large-scale three-dimensional radiation dose reconstruction for patients requires a large amount of manual work. We present an image processing-based pipeline to automatically reconstruct radiation dose. The pipeline was designed for childhood cancer survivors that received abdominal radiotherapy with anterior-to-posterior and posterior-to-anterior field set-up. First, anatomical landmarks are automatically identified on two-dimensional radiographs. Second, these landmarks are used to derive parameters to emulate the geometry of the plan on a surrogate computed tomography. Finally, the plan is emulated and used as input for dose calculation. For qualitative evaluation, 100 cases of automatic and manual plan emulations were assessed by two experienced radiation dosimetrists in a blinded comparison. The two radiation dosimetrists approved 100%/100% and 92%/91% of the automatic/manual plan emulations, respectively. Similar approval rates of 100% and 94% hold when the automatic pipeline is applied on another 50 cases. Further, quantitative comparisons resulted in on average < 5 mm difference in plan isocenter/borders, and < 0.9 Gy in organ mean dose (prescribed dose: 14.4 Gy) calculated from the automatic and manual plan emulations. No statistically significant difference in terms of dose reconstruction accuracy was found for most organs at risk. Ultimately, our automatic pipeline results are of sufficient quality to enable effortless scaling of dose reconstruction data generation.

8.
Med Phys ; 45(4): 1504-1517, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29430662

ABSTRACT

PURPOSE: The aim of this study is to establish the first step toward a novel and highly individualized three-dimensional (3D) dose distribution reconstruction method, based on CT scans and organ delineations of recently treated patients. Specifically, the feasibility of automatically selecting the CT scan of a recently treated childhood cancer patient who is similar to a given historically treated child who suffered from Wilms' tumor is assessed. METHODS: A cohort of 37 recently treated children between 2- and 6-yr old are considered. Five potential notions of ground-truth similarity are proposed, each focusing on different anatomical aspects. These notions are automatically computed from CT scans of the abdomen and 3D organ delineations (liver, spleen, spinal cord, external body contour). The first is based on deformable image registration, the second on the Dice similarity coefficient, the third on the Hausdorff distance, the fourth on pairwise organ distances, and the last is computed by means of the overlap volume histogram. The relationship between typically available features of historically treated patients and the proposed ground-truth notions of similarity is studied by adopting state-of-the-art machine learning techniques, including random forest. Also, the feasibility of automatically selecting the most similar patient is assessed by comparing ground-truth rankings of similarity with predicted rankings. RESULTS: Similarities (mainly) based on the external abdomen shape and on the pairwise organ distances are highly correlated (Pearson rp ≥ 0.70) and are successfully modeled with random forests based on historically recorded features (pseudo-R2 ≥ 0.69). In contrast, similarities based on the shape of internal organs cannot be modeled. For the similarities that random forest can reliably model, an estimation of feature relevance indicates that abdominal diameters and weight are the most important. Experiments on automatically selecting similar patients lead to coarse, yet quite robust results: the most similar patient is retrieved only 22% of the times, however, the error in worst-case scenarios is limited, with the fourth most similar patient being retrieved. CONCLUSIONS: Results demonstrate that automatically selecting similar patients is feasible when focusing on the shape of the external abdomen and on the position of internal organs. Moreover, whereas the common practice in phantom-based dose reconstruction is to select a representative phantom using age, height, and weight as discriminant factors for any treatment scenario, our analysis on abdominal tumor treatment for children shows that the most relevant features are weight and the anterior-posterior and left-right abdominal diameters.


Subject(s)
Cancer Survivors/statistics & numerical data , Imaging, Three-Dimensional , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiation Dosage , Tomography, X-Ray Computed , Automation , Child , Child, Preschool , Databases, Factual , Feasibility Studies , Female , Humans , Male , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL