Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Publication year range
2.
Nature ; 573(7772): 130-134, 2019 09.
Article in English | MEDLINE | ID: mdl-31413369

ABSTRACT

Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.


Subject(s)
Adult Stem Cells/pathology , Aging/pathology , Central Nervous System/pathology , Multipotent Stem Cells/pathology , Stem Cell Niche , Animals , Animals, Newborn , Cell Count , Extracellular Matrix/pathology , Female , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Oligodendroglia/pathology , Rats , Stem Cell Niche/physiology
3.
Mol Cell ; 67(1): 96-105.e4, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28673544

ABSTRACT

Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.


Subject(s)
Electron Transport Complex III/metabolism , Iron-Sulfur Proteins/metabolism , Membrane Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Electron Transport Complex III/deficiency , Electron Transport Complex III/genetics , Female , Genotype , HeLa Cells , Humans , Iron-Sulfur Proteins/genetics , Kinetics , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Diseases , Mitochondrial Proteins/genetics , Motor Activity , Nerve Degeneration , Nervous System/metabolism , Nervous System/pathology , Nervous System/physiopathology , Phenotype , Protein Binding , Protein Stability , Proteolysis , Reactive Oxygen Species/metabolism
4.
PLoS Biol ; 19(4): e3001166, 2021 04.
Article in English | MEDLINE | ID: mdl-33826607

ABSTRACT

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.


Subject(s)
Extracellular Vesicles/metabolism , Mitochondria/metabolism , Neural Stem Cells/metabolism , Animals , Biological Transport , Cells, Cultured , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/ultrastructure
5.
EMBO Rep ; 23(8): e54825, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35699132

ABSTRACT

The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the "core" redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.


Subject(s)
Drosophila melanogaster , Electron Transport Complex IV , Amino Acid Sequence , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Mammals/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Proteomics
6.
J Inherit Metab Dis ; 47(1): 145-175, 2024 01.
Article in English | MEDLINE | ID: mdl-38171948

ABSTRACT

In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.


Subject(s)
CRISPR-Cas Systems , Mitochondrial Diseases , Humans , Animals , Mice , Gene Editing , Genetic Therapy , DNA, Mitochondrial/genetics , Endonucleases/genetics , Endonucleases/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy
7.
Brain ; 145(10): 3405-3414, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36270002

ABSTRACT

Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4-/-, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4-/- mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4-/- mice, doubling the lifespan from 45 to ≈100 days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9 months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9 months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.


Subject(s)
Leigh Disease , Child , Mice , Animals , Humans , Leigh Disease/genetics , Leigh Disease/therapy , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Dependovirus/genetics , Oxidative Phosphorylation , Disease Models, Animal , Mice, Knockout , Mammals/metabolism
8.
Nucleic Acids Res ; 49(9): 5230-5248, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33956154

ABSTRACT

Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.


Subject(s)
DNA Polymerase gamma/genetics , ATP-Dependent Proteases/metabolism , Animals , Cells, Cultured , DNA Polymerase gamma/metabolism , DNA Replication , DNA, Mitochondrial/analysis , Enzyme Stability/genetics , HeLa Cells , Holoenzymes/metabolism , Humans , Mice , Mitochondrial Proteins/metabolism , Mutation
9.
Mol Psychiatry ; 26(10): 5733-5750, 2021 10.
Article in English | MEDLINE | ID: mdl-32632204

ABSTRACT

Mutations in pitrilysin metallopeptidase 1 (PITRM1), a mitochondrial protease involved in mitochondrial precursor processing and degradation, result in a slow-progressing syndrome characterized by cerebellar ataxia, psychotic episodes, and obsessive behavior, as well as cognitive decline. To investigate the pathogenetic mechanisms of mitochondrial presequence processing, we employed cortical neurons and cerebral organoids generated from PITRM1-knockout human induced pluripotent stem cells (iPSCs). PITRM1 deficiency strongly induced mitochondrial unfolded protein response (UPRmt) and enhanced mitochondrial clearance in iPSC-derived neurons. Furthermore, we observed increased levels of amyloid precursor protein and amyloid ß in PITRM1-knockout neurons. However, neither cell death nor protein aggregates were observed in 2D iPSC-derived cortical neuronal cultures. On the other hand, over time, cerebral organoids generated from PITRM1-knockout iPSCs spontaneously developed pathological features of Alzheimer's disease (AD), including the accumulation of protein aggregates, tau pathology, and neuronal cell death. Single-cell RNA sequencing revealed a perturbation of mitochondrial function in all cell types in PITRM1-knockout cerebral organoids, whereas immune transcriptional signatures were substantially dysregulated in astrocytes. Importantly, we provide evidence of a protective role of UPRmt and mitochondrial clearance against impaired mitochondrial presequence processing and proteotoxic stress. Here, we propose a novel concept of PITRM1-linked neurological syndrome whereby defects of mitochondrial presequence processing induce an early activation of UPRmt that, in turn, modulates cytosolic quality control pathways. Thus, our work supports a mechanistic link between mitochondrial function and common neurodegenerative proteinopathies.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Alzheimer Disease/genetics , Amyloid beta-Peptides , Humans , Metalloendopeptidases , Mitochondria , Organoids
10.
PLoS Biol ; 17(12): e3000482, 2019 12.
Article in English | MEDLINE | ID: mdl-31805040

ABSTRACT

Better understanding of feeding behaviour will be vital in reducing obesity and metabolic syndrome, but we lack a standard model that captures the complexity of feeding behaviour. We construct an accurate stochastic model of rodent feeding at the bout level in order to perform quantitative behavioural analysis. Analysing the different effects on feeding behaviour of peptide YY3-36 (PYY3-36), lithium chloride, glucagon-like peptide 1 (GLP-1), and leptin shows the precise behavioural changes caused by each anorectic agent. Our analysis demonstrates that the changes in feeding behaviour evoked by the anorectic agents investigated do not mimic the behaviour of well-fed animals and that the intermeal interval is influenced by fullness. We show how robust homeostatic control of feeding thwarts attempts to reduce food intake and how this might be overcome. In silico experiments suggest that introducing a minimum intermeal interval or modulating upper gut emptying can be as effective as anorectic drug administration.


Subject(s)
Eating/drug effects , Feeding Behavior/drug effects , Feeding Behavior/physiology , Animals , Appetite Depressants/pharmacology , Eating/physiology , Glucagon-Like Peptide 1/pharmacology , Homeostasis/drug effects , Leptin/pharmacology , Male , Mice , Obesity , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Rats
11.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743286

ABSTRACT

This Special Issue collects current knowledge on the molecular mechanisms underlying mitochondrial dysfunction and its related diseases, as well as therapies and perspectives pertaining to their treatment [...].


Subject(s)
Mitochondria , Mitochondria/genetics
12.
Mol Ther ; 28(8): 1918-1930, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32562616

ABSTRACT

Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17-/- mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17-/- animals as a late-onset clinical feature (after 12-18 months of life). In contrast, Mpv17-/- animals from this new "mixed" strain died at 8-9 weeks after birth because of severe kidney failure However, Mpv17-/-::Opa1tg mice lived much longer than Mpv17-/- littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17-/-::Opa1tg than in Mpv17-/- kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17-/-::Opa1tg versus Mpv17-/- kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes.


Subject(s)
GTP Phosphohydrolases/genetics , Gene Expression , Kidney Diseases/etiology , Kidney Diseases/metabolism , Membrane Proteins/deficiency , Animals , Apoptosis/genetics , DNA, Mitochondrial , Disease Models, Animal , Disease Susceptibility , GTP Phosphohydrolases/metabolism , Immunohistochemistry , Kidney Diseases/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Biological , Oxidative Phosphorylation , Podocytes/metabolism , Podocytes/pathology , Podocytes/ultrastructure
13.
J Cell Mol Med ; 24(6): 3534-3548, 2020 03.
Article in English | MEDLINE | ID: mdl-32040259

ABSTRACT

Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.


Subject(s)
Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , Signal Transduction , Ventricular Remodeling , Animals , Biocatalysis , Electron Transport , Extracellular Matrix/metabolism , Male , Mice , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Myocardial Contraction , Myocardial Ischemia/complications , Myocardial Ischemia/genetics , Myocardial Reperfusion Injury/complications , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Myocardium/ultrastructure , Oxidoreductases/metabolism , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
J Biol Chem ; 293(25): 9869-9879, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29743240

ABSTRACT

The generation of mitochondrial superoxide (O2̇̄) by reverse electron transport (RET) at complex I causes oxidative damage in pathologies such as ischemia reperfusion injury, but also provides the precursor to H2O2 production in physiological mitochondrial redox signaling. Here, we quantified the factors that determine mitochondrial O2̇̄ production by RET in isolated heart mitochondria. Measuring mitochondrial H2O2 production at a range of proton-motive force (Δp) values and for several coenzyme Q (CoQ) and NADH pool redox states obtained with the uncoupler p-trifluoromethoxyphenylhydrazone, we show that O2̇̄ production by RET responds to changes in O2 concentration, the magnitude of Δp, and the redox states of the CoQ and NADH pools. Moreover, we determined how expressing the alternative oxidase from the tunicate Ciona intestinalis to oxidize the CoQ pool affected RET-mediated O2̇̄ production at complex I, underscoring the importance of the CoQ pool for mitochondrial O2̇̄ production by RET. An analysis of O2̇̄ production at complex I as a function of the thermodynamic forces driving RET at complex I revealed that many molecules that affect mitochondrial reactive oxygen species production do so by altering the overall thermodynamic driving forces of RET, rather than by directly acting on complex I. These findings clarify the factors controlling RET-mediated mitochondrial O2̇̄ production in both pathological and physiological conditions. We conclude that O2̇̄ production by RET is highly responsive to small changes in Δp and the CoQ redox state, indicating that complex I RET represents a major mode of mitochondrial redox signaling.


Subject(s)
Electron Transport Complex I/metabolism , Hydrogen Peroxide/metabolism , Mitochondria, Heart/metabolism , Superoxides/metabolism , Ubiquinone/metabolism , Animals , Electron Transport , Female , Male , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation , Rats , Rats, Wistar , Signal Transduction
15.
Biochem Soc Trans ; 46(5): 1247-1261, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30301846

ABSTRACT

Preclinical work aimed at developing new therapies for mitochondrial diseases has recently given new hopes and opened unexpected perspectives for the patients affected by these pathologies. In contrast, only minor progresses have been achieved so far in the translation into the clinics. Many challenges are still ahead, including the need for a better characterization of the pharmacological effects of the different approaches and the design of appropriate clinical trials with robust outcome measures for this extremely heterogeneous, rare, and complex group of disorders. In this review, we will discuss the most important achievements and the major challenges in this very dynamic research field.


Subject(s)
Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/therapy , Animals , Antioxidants/chemistry , Clinical Trials as Topic , Diet, Ketogenic , Genetic Therapy , Humans , Hypoxia , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/pathology , Mutation , Phenotype , Reactive Oxygen Species/metabolism , Sirolimus/pharmacology
17.
Biochim Biophys Acta ; 1862(4): 705-715, 2016 04.
Article in English | MEDLINE | ID: mdl-26804654

ABSTRACT

Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1(-/-) knockout leads only to a mild COX defect. We used SURF1(-/-) mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1(-/-) mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I-III2-IVn SCs in SURF1 patient fibroblasts, whereas SURF1(-/-) mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1(-/-) mouse liver and brain. Both the control and SURF1(-/-) mice revealed only negligible formation of the I-III2-IVn SCs and marked tissue differences in the contents of COX dimer and III2-IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I-III2-IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis.


Subject(s)
Electron Transport Complex IV/metabolism , Fibroblasts/metabolism , Leigh Disease/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Animals , Electron Transport Complex IV/genetics , Female , Fibroblasts/pathology , Humans , Leigh Disease/genetics , Leigh Disease/pathology , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Organ Specificity , Species Specificity
18.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1422-1435, 2017 06.
Article in English | MEDLINE | ID: mdl-28235644

ABSTRACT

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca2+-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.


Subject(s)
Amino Acid Transport Systems/biosynthesis , Aspartic Acid/analogs & derivatives , Cell Proliferation , Down-Regulation , Mitochondrial Proteins/biosynthesis , Neurons/metabolism , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Antiporters/deficiency , Antiporters/genetics , Antiporters/metabolism , Aspartic Acid/biosynthesis , Cell Line , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Neurons/pathology , Psychomotor Disorders/genetics , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology
19.
J Inherit Metab Dis ; 40(4): 587-599, 2017 07.
Article in English | MEDLINE | ID: mdl-28324239

ABSTRACT

A large group of mitochondrial disorders, ranging from early-onset pediatric encephalopathic syndromes to late-onset myopathy with chronic progressive external ophthalmoplegia (CPEOs), are inherited as Mendelian disorders characterized by disturbed mitochondrial DNA (mtDNA) maintenance. These errors of nuclear-mitochondrial intergenomic signaling may lead to mtDNA depletion, accumulation of mtDNA multiple deletions, or both, in critical tissues. The genes involved encode proteins belonging to at least three pathways: mtDNA replication and maintenance, nucleotide supply and balance, and mitochondrial dynamics and quality control. In most cases, allelic mutations in these genes may lead to profoundly different phenotypes associated with either mtDNA depletion or multiple deletions.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria/pathology , Mitochondrial Encephalomyopathies/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , Alleles , Animals , Biopsy , Cell Nucleus/metabolism , Gene Deletion , Humans , Mice , Mutation , Phenotype , Signal Transduction , Syndrome
20.
Proteomics ; 16(7): 1166-76, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26867521

ABSTRACT

Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency and redox active proteins, as reflected by downregulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through upregulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins, indicating novel link between ETHE1 and gene expression regulation. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide. All MS data have been deposited in the ProteomeXchange with the dataset identifiers PXD002741 (http://proteomecentral.proteomexchange.org/dataset/PXD002741) and PXD002742 (http://proteomecentral.proteomexchange.org/dataset/PXD002741).


Subject(s)
Brain Diseases, Metabolic, Inborn/metabolism , Dioxygenases/deficiency , Dioxygenases/genetics , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Purpura/metabolism , Acetylation , Animals , Female , Male , Mice , Mice, Knockout , Proteome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL