Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Med Microbiol Immunol ; 212(1): 103-122, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36583790

ABSTRACT

The SARS-CoV-2 virus has been rapidly evolving over the time and the genetic variation has led to the generation of Variants of Concerns (VoC), which have shown increased fitness. These VoC viruses contain the key mutations in the spike protein which have allowed better survival and evasion of host defense mechanisms. The D614G mutation in the spike domain is found in the majority of VoC; additionally, the P681R/H mutation at the S1/S2 furin cleavage site junction is also found to be highly conserved in major VoCs; Alpha, Delta, Omicron, and its' current variants. The impact of these genetic alterations of the SARS-CoV-2 VoCs on the host cell entry, transmissibility, and infectivity has not been clearly identified. In our study, Delta and D614G + P681R synthetic double mutant pseudoviruses showed a significant increase in the cell entry, cell-to-cell fusion and infectivity. In contrast, the Omicron and P681H synthetic single mutant pseudoviruses showed TMPRSS2 independent cell entry, less fusion and infectivity as compared to Delta and D614G + P681R double mutants. Addition of exogenous trypsin further enhanced fusion in Delta viruses as compared to Omicron. Furthermore, Delta viruses showed susceptibility to both E64d and Camostat mesylate inhibitors suggesting, that the Delta virus could exploit both endosomal and TMPRSS2 dependent entry pathways as compared to the Omicron virus. Taken together, these results indicate that the D614G and P681R/H mutations in the spike protein are pivotal which might be favoring the VoC replication in different host compartments, and thus allowing a balance of mutation vs selection for better long-term adaptation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Mutation
2.
J Biol Chem ; 295(42): 14352-14366, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32817314

ABSTRACT

One strategy for the development of a next generation influenza vaccine centers upon using conserved domains of the virus to induce broader and long-lasting immune responses. The production of artificial proteins by mimicking native-like structures has shown to be a promising approach for vaccine design against diverse enveloped viruses. The amino terminus of influenza A virus matrix 2 ectodomain (M2e) is highly conserved among influenza subtypes, and previous studies have shown M2e-based vaccines are strongly immunogenic, making it an attractive target for further exploration. We hypothesized that stabilizing M2e protein in the mammalian system might influence the immunogenicity of M2e with the added advantage to robustly produce the large scale of proteins with native-like fold and hence can act as an efficient vaccine candidate. In this study, we created an engineered construct in which the amino terminus of M2e is linked to the tetramerizing domain tGCN4, expressed the construct in a mammalian system, and tested for immunogenicity in BALB/c mice. We have also constructed a stand-alone M2e construct (without tGCN4) and compared the protein expressed in mammalian cells and in Escherichia coli using in vitro and in vivo methods. The mammalian-expressed protein was found to be more stable, more antigenic than the E. coli protein, and form higher-order oligomers. In an intramuscular protein priming and boosting regimen in mice, these proteins induced high titers of antibodies and elicited a mixed Th1/Th2 response. These results highlight the mammalian-expressed M2e soluble proteins as a promising vaccine development platform.


Subject(s)
Influenza A Virus, H1N1 Subtype/metabolism , Viral Matrix Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Escherichia coli/metabolism , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza Vaccines/immunology , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Protein Domains , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Th1 Cells/cytology , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/cytology , Th2 Cells/immunology , Th2 Cells/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
3.
J Biol Chem ; 295(36): 12814-12821, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32727845

ABSTRACT

There is a desperate need for safe and effective vaccines, therapies, and diagnostics for SARS- coronavirus 2 (CoV-2), the development of which will be aided by the discovery of potent and selective antibodies against relevant viral epitopes. Human phage display technology has revolutionized the process of identifying and optimizing antibodies, providing facile entry points for further applications. Herein, we use this technology to search for antibodies targeting the receptor-binding domain (RBD) of CoV-2. Specifically, we screened a naïve human semisynthetic phage library against RBD, leading to the identification of a high-affinity single-chain fragment variable region (scFv). The scFv was further engineered into two other antibody formats (scFv-Fc and IgG1). All three antibody formats showed high binding specificity to CoV-2 RBD and the spike antigens in different assay systems. Flow cytometry analysis demonstrated specific binding of the IgG1 format to cells expressing membrane-bound CoV-2 spike protein. Docking studies revealed that the scFv recognizes an epitope that partially overlaps with angiotensin-converting enzyme 2 (ACE2)-interacting sites on the CoV-2 RBD. Given its high specificity and affinity, we anticipate that these anti-CoV-2 antibodies will be useful as valuable reagents for accessing the antigenicity of vaccine candidates, as well as developing antibody-based therapeutics and diagnostics for CoV-2.


Subject(s)
Antibody Affinity , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Binding Sites , Epitopes/chemistry , Epitopes/immunology , HEK293 Cells , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Single-Chain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry
4.
J Immunol ; 201(3): 957-970, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29907707

ABSTRACT

IL-1R/TLR signaling plays a significant role in sensing harmful foreign pathogens and mounting effective innate and adaptive immune responses. However, the precise mechanism by which Leishmania donovani, an obligate intramacrophagic pathogen, breaches IL-1R/TLR signaling and host-protective immunity remains obscure. In this study, we report the novel biphasic role of Toll-interacting protein (Tollip), a negative regulator of the IL-1R/TLR pathway, in the disease progression of experimental visceral leishmaniasis. We observed that during early hours of infection, L. donovani induced phosphorylation of IRAK-1, resulting in the release of Tollip from the IL-1R-associated kinase (IRAK)-1 complex in J774 macrophages, which then acted as an endocytic adaptor on cell surface IL-1R1 and promoted its lysosomal degradation. In the later stage, Tollip shuttled back to IRAK-1, thereby inhibiting IRAK-1 phosphorylation in association with IRAK-M to neutralize downstream TLR signaling in infected macrophages. Moreover, during late infection, L. donovani enhanced nuclear translocation and recruitment of transcription factors early growth response protein 2, NF erythroid 2-related factor 2, and Ahr on Tollip promoter for its induction. Small interfering RNA-mediated silencing of Tollip in infected macrophages significantly enhanced NF-κB activation and induced host-defensive IL-12 and TNF-α synthesis, thereby reducing amastigote multiplication. Likewise, abrogation of Tollip in L. donovani-infected BALB/c mice resulted in STAT-1-, IRF-1-, and NF-κB-mediated upregulation of host-protective cytokines and reduced organ parasite burden, thereby implicating its role in disease aggravation. Taken together, we conclude that L. donovani exploited the multitasking function of Tollip for its own establishment through downregulating IL-1R1/TLR signaling in macrophages.


Subject(s)
Intracellular Signaling Peptides and Proteins/immunology , Leishmania donovani/immunology , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Animals , Cells, Cultured , Down-Regulation/immunology , Female , Interleukin-1 Receptor-Associated Kinases/immunology , Leishmaniasis, Visceral/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , NF-kappa B , Phosphorylation/immunology , STAT1 Transcription Factor/immunology , Tumor Necrosis Factor-alpha/immunology , Up-Regulation/immunology
5.
Cell Mol Life Sci ; 75(3): 563-588, 2018 02.
Article in English | MEDLINE | ID: mdl-28900667

ABSTRACT

In an endeavor to search for affordable and safer therapeutics against debilitating visceral leishmaniasis, we examined antileishmanial potential of ammonium trichloro [1,2-ethanediolato-O,O']-tellurate (AS101); a tellurium based non toxic immunomodulator. AS101 showed significant in vitro efficacy against both Leishmania donovani promastigotes and amastigotes at sub-micromolar concentrations. AS101 could also completely eliminate organ parasite load from L. donovani infected Balb/c mice along with significant efficacy against infected hamsters (˃93% inhibition). Analyzing mechanistic details revealed that the double edged AS101 could directly induce apoptosis in promastigotes along with indirectly activating host by reversing T-cell anergy to protective Th1 mode, increased ROS generation and anti-leishmanial IgG production. AS101 could inhibit IL-10/STAT3 pathway in L. donovani infected macrophages via blocking α4ß7 integrin dependent PI3K/Akt signaling and activate host MAPKs and NF-κB for Th1 response. In silico docking and biochemical assays revealed AS101's affinity to form thiol bond with cysteine residues of trypanothione reductase in Leishmania promastigotes leading to its inactivation and inducing ROS-mediated apoptosis of the parasite via increased Ca2+ level, loss of ATP and mitochondrial membrane potential along with metacaspase activation. Our findings provide the first evidence for the mechanism of action of AS101 with excellent safety profile and suggest its promising therapeutic potential against experimental visceral leishmaniasis.


Subject(s)
Ethylenes/therapeutic use , Integrins/antagonists & inhibitors , Leishmania donovani/enzymology , Leishmaniasis, Visceral/drug therapy , NADH, NADPH Oxidoreductases/drug effects , Animals , Cells, Cultured , Cricetinae , Disease Models, Animal , Ethylenes/pharmacology , Female , Host-Parasite Interactions/drug effects , Integrins/drug effects , Leishmania donovani/drug effects , Leishmania donovani/metabolism , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/pathology , Male , Mice , Mice, Inbred BALB C , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/drug effects , Signal Transduction/drug effects
6.
Parasitol Res ; 117(9): 2901-2912, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29946763

ABSTRACT

We earlier found that F6 fraction of human filaria Brugia malayi cross-reacted with sera of Leishmania donovani infected hamsters and immunization with F6 inhibited both filarial and leishmanial infections. In the present study, we identified a 52.9-93.6 kDa fraction (Ld1) of L. donovani that cross-reacted with sera of B. malayi infected animals and investigated effect of Ld1 on filarial infection. Immunization of BALB/c mice with Ld1 facilitated B. malayi infection with remarkable increase in parasite burden. Facilitation of filarial infection was associated with downregulated cell proliferation, IL-5, IL-13, IFN-γ, TNF-α, and IL-2 levels and upregulated IL-4 and TGF-ß. Ld1 exposure also suppressed MHC class-I, MHC class-II, and FcεR1 expression, and phagocytosis in naive mouse macrophages, and CD4+, CD8+, and CD19+ cell population in mouse spleen. Two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight-mass spectrometry revealed eight proteins in Ld1: putative heat shock protein (HSP) 70-related protein 1, HSP70 mitochondrial precursor, alanine aminotransferase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, protein disulfide isomerase, putative ATPase beta subunit, trypanothione reductase, and a hypothetical protein. HSP70 protein mitochondrial precursor and trypanothione reductase showed homology with Trypanosoma cruzi and L. donovani, respectively, and the rest 6 proteins including hypothetical protein bear homology with L. infantum. In conclusion, the present study for the first time shows that immunization with filarial cross-reactive Ld1 fraction of L. donovani facilitates filarial infection by modulating Th1 and Th2 responses. Ld1 molecules may therefore facilitate filarial infection in filaria-leishmania co-infection.


Subject(s)
Brugia malayi/immunology , Cross Reactions/immunology , Filariasis/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis/immunology , Animals , Cell Proliferation , Coinfection/immunology , Coinfection/parasitology , Cricetinae , Filariasis/parasitology , Humans , Leishmaniasis/parasitology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Th1 Cells/immunology , Th2 Cells/immunology , Vaccination
8.
J Antimicrob Chemother ; 70(2): 518-27, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25389223

ABSTRACT

OBJECTIVES: The objective of this study was to identify a nitroimidazo-oxazole lead molecule for the treatment of visceral leishmaniasis (VL). METHODS: A library of 72 nitroimidazo-oxazoles was evaluated in vitro for their antileishmanial activity against luciferase-transfected DD8 amastigotes of Leishmania donovani. On the basis of their in vitro potency and pharmacokinetic properties, the promising compounds were tested in acute BALB/c mouse and chronic hamster models of VL via oral administration and efficacy was evaluated by microscopic counting of amastigotes after Giemsa staining. The best antileishmanial candidates (racemate DNDI-VL-2001) and its R enantiomer (DNDI-VL-2098) were evaluated in vitro against a range of Leishmania strains. These candidates were further studied in a hamster model using various dose regimens. Cytokine and inducible nitric oxide synthase estimations by real-time PCR and nitric oxide generation by Griess assay were also carried out for DNDI-VL-2098. RESULTS: In vitro screening of nitroimidazo-oxazole compounds identified the racemate DNDI-VL-2001 (6-nitroimidazo-oxazole derivative) and its enantiomers as candidates for further evaluation in in vivo models of VL. DNDI-VL-2098 (IC50 of 0.03 µM for the DD8 strain) showed excellent in vivo activity in both mouse and hamster models, with an ED90 value of 3.7 and <25 mg/kg, respectively, and was also found to be very effective against high-grade infection in the hamster model. Our studies revealed that, along with leishmanicidal activity, DNDI-VL-2098 was also capable of inducing host-protective immune cells to suppress Leishmania parasites in hamsters. CONCLUSIONS: These studies led to the identification of compound DNDI-VL-2098 as a preclinical candidate for further drug development as an oral treatment for VL.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Administration, Oral , Animals , Antiprotozoal Agents/administration & dosage , Chemistry, Pharmaceutical , Cricetinae , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Compounding , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Leishmaniasis, Visceral/metabolism , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitroimidazoles/administration & dosage , Nitroimidazoles/pharmacology , Parasitic Sensitivity Tests , Time Factors
9.
Bioorg Med Chem Lett ; 24(9): 2046-52, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24726804

ABSTRACT

In vitro ADME characterization of the lead compound 1 identified for visceral leishmaniasis was undertaken and further structural analogs were synthesized for antileishmanial screening. Compound 1 was highly permeable in intestinal PAMPA model (31 × 10(-6)cm/s) and was moderately bound to mouse and human plasma proteins (% bound 85-95%), its blood to plasma concentration ratio was less than 1, but the compound was unstable in blood. Compound 1 was found to have no CYP450 liability with CYP2C9, 2C19, 2D6 and 3A4. It showed inhibition with CYP1A2 with an IC50 value of 0.50 µM. Analogs of 1 were synthesized and subsequently characterized for in vitro activity against the intracellular form of Leishmania donovani. Resulting quinolines were found to have similar efficacy as 1 against the parasite. Compounds 8b and 8f were found to be the most active with IC50 values of 0.84 µM and 0.17 µM, respectively compared to 0.22 µM for compound 1. Of all the analogs tested, 8d was stable in hamster, mouse and human liver microsomes but lost the efficacy with an IC50 of 6.42 µM. Based on the in vitro efficacy and DMPK profile, compounds 8b and 8f seem the best candidates to be screened in further assays.


Subject(s)
Drug Design , Leishmania donovani/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Animals , Cricetinae , Cytochrome P-450 Enzyme System/metabolism , Humans , Leishmaniasis, Visceral/drug therapy , Mice , Microsomes, Liver/metabolism , Parasitic Sensitivity Tests , Quinolines/metabolism , Quinolines/pharmacokinetics , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacokinetics
10.
Bioelectrochemistry ; 158: 108700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38582009

ABSTRACT

The timely control of infectious diseases can prevent the spread of infections and mitigate the significant socio-economic damage witnessed during recent pandemics. Diagnostic methods play a significant role in detecting highly contagious agents, such as viruses, to prevent further transmission. The emergence of advanced point-of-care techniques offers several advantages over conventional approaches for detecting infectious agents. These techniques are highly sensitive, rapid, can be miniaturized, and are cost-effective. Recently, MXene-based 2D nanocomposites have proven beneficial for fabricating electrochemical biosensors due to their suitable electrical, optical, and mechanical properties. This article covers electrochemical biosensors based on MXene nanocomposite for the detection of viruses, along with the associated challenges and future possibilities. Additionally, we highlight various conventional techniques for the detection of infectious agents, discussing their pros and cons. We delve into the challenges faced during the fabrication of MXene-based biosensors and explore future endeavors. It is anticipated that the information presented in this work will pave the way for the development of Point-of-Care (POC) devices capable of sensitive and selective virus detection, enhancing preparedness for ongoing and future pandemics.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , Viruses/isolation & purification , Nanocomposites/chemistry , Point-of-Care Systems , Miniaturization
11.
J Leukoc Biol ; 115(1): 130-148, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37648666

ABSTRACT

While neutrophil activation during dengue virus infection is known, the effect of dengue virus infection on neutrophil biogenesis has not been studied. We demonstrate that dengue virus serotype 2 induces the differentiation of mice progenitor cells ex vivo toward the CD11b+Ly6C+Ly6G+ granulocyte population. We further observed an expansion of CD11b+Ly6CintLy6Glow myeloid cells in the bone marrow of dengue virus serotype 2-infected AG129 mice with low CXCR2 expression, implying an immature population. Additionally, dengue virus serotype 2 alone could induce the differentiation of promyelocyte cell line HL-60 into neutrophil-like cells, as evidenced by increased expression of CD10, CD66b, CD16, CD11b, and CD62L, corroborating the preferential shift toward neutrophil differentiation by dengue virus serotype 2 in the mouse model of dengue infection. The functional analysis showed that dengue virus serotype 2-induced neutrophil-like cells exhibited reduced phagocytic activity and enhanced NETosis, as evidenced by the increased production of myeloperoxidase, citrullinated histones, extracellular DNA, and superoxide. These neutrophil-like cells lose their ability to proliferate irreversibly and undergo arrest in the G0 to G1 phase of the cell cycle. Further studies show that myeloperoxidase-mediated signaling operating through the reactive oxygen species axis may be involved in dengue virus serotype 2-induced proliferation and differentiation of bone marrow cells as ABAH, a myeloperoxidase inhibitor, limits cell proliferation in vitro and ex vivo, affects the cell cycle, and reduces reactive oxygen species production. Additionally, myeloperoxidase inhibitor reduced NETosis and vascular leakage in dengue virus serotype 2-infected AG129 mice. Our study thus provides evidence that dengue virus serotype 2 can accelerate the differentiation of bone marrow progenitor cells into neutrophils through myeloperoxidase and modulate their functions.


Subject(s)
Dengue Virus , Dengue , Virus Diseases , Animals , Mice , Neutrophils/metabolism , Bone Marrow/metabolism , Reactive Oxygen Species , Cell Differentiation , Peroxidase
12.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38757508

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Subject(s)
Antibodies, Viral , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus , Spike Glycoprotein, Coronavirus , Viral Vaccines , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Mice , Female , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Immunogenicity, Vaccine , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine , Humans
13.
Virus Res ; 341: 199331, 2024 03.
Article in English | MEDLINE | ID: mdl-38280436

ABSTRACT

Dengue virus infection in humans ranges from asymptomatic infection to severe infection, with ∼2.5 % overall disease fatality rate. Evidence of neurological manifestations is seen in the severe form of the disease, which might be due to the direct invasion of the viruses into the CNS system but is poorly understood. In this study, we demonstrated that the aged AG129 mice are highly susceptible to dengue serotypes 1-4, and following the adaptation, this resulted in the generation of neurovirulent strains that showed enhanced replication, aggravated disease severity, increased neuropathogenesis, and high lethality in both adult and aged AG129 mice. The infected mice had endothelial dysfunction, elicited pro-inflammatory cytokine responses, and exhibited 100 % mortality. Further analysis revealed that aged-adapted DENV strains induced measurable alterations in TLR expression in the aged mice as compared to the adult mice. In addition, metabolomics analysis of the serum samples from the infected adult mice revealed dysregulation of 18 metabolites and upregulation of 6-keto-prostaglandin F1 alpha, phosphocreatine, and taurocholic acid. These metabolites may serve as key biomarkers to decipher and comprehend the severity of dengue-associated severe neuro-pathogenesis.


Subject(s)
Dengue Virus , Dengue , Humans , Animals , Mice , Aged , Dengue Virus/physiology , Cytokines/metabolism , Disease Models, Animal
14.
Bioorg Med Chem Lett ; 23(1): 248-51, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177254

ABSTRACT

Some novel α and ß ionone based chalcones and their dihydropyrazolidines/pyrazolidines have been synthesized and evaluated for their in vitro and in vivo antileishmanial activities against Leishmania donovani. Amongest all, one compound (4d) exhibited significant in vitro activity against intracellular amastigotes of Leishmania donovani with IC(50) values of 7.49 µM and was found promising as compared to reference drug, miltefosine. On the basis of good Selectivity Index (S.I.), the compound was further tested for its in vivo response against Leishmania donovani/hamster model and has shown significant inhibition of parasite multiplication (81%). The present study has helped us in identifying a new lead that could be exploited as a potential antileishmanial agent.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Heterocyclic Compounds/chemistry , Pyrazoles/chemical synthesis , Animals , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Chalcones/chemistry , Chalcones/therapeutic use , Chalcones/toxicity , Cricetinae , Disease Models, Animal , Drug Evaluation, Preclinical , Heterocyclic Compounds/therapeutic use , Heterocyclic Compounds/toxicity , Humans , Leishmaniasis/drug therapy , Leishmaniasis, Visceral/drug therapy , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyrazoles/toxicity , Structure-Activity Relationship
15.
Vaccines (Basel) ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37112692

ABSTRACT

Immunogens mimicking the native-like structure of surface-exposed viral antigens are considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based protein subunit vaccines against Influenza have been shown to induce protective efficacy when administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019 virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model through intradermal immunization with the prime-boost regimen conferred complete protection against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore, the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a suitable vaccine candidate.

16.
Bioorg Med Chem Lett ; 22(21): 6728-30, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23031588

ABSTRACT

A new series of aryl substituted ketene dithioacetals 6a-h was synthesized and evaluated for their in vitro and in vivo antileishmanial activity against Leishmania donovani. Two compounds exhibited significant in vitro activity against intracellular amastigotes of L. donovani with IC(50) values 3.56 and 5.12 µM and were found promising as compared with reference drug, miltefosine. On the basis of good Selectivity Indices (S.I.), they were further tested for their in vivo response against L. donovani/hamster model and showed significant inhibition of parasite multiplication 78% and 83%, respectively. These compounds were better than the existing antileishmanials in respect to IC(50) and SI values, but were less active than miltefosine in vivo.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis/drug therapy , Acetals/chemical synthesis , Acetals/chemistry , Acetals/pharmacology , Animals , Antiprotozoal Agents/chemistry , Cricetinae , Ethylenes/chemical synthesis , Ethylenes/chemistry , Ethylenes/pharmacology , Ketones/chemical synthesis , Ketones/chemistry , Ketones/pharmacology , Models, Animal , Molecular Structure , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology
17.
Exp Parasitol ; 131(3): 377-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22626518

ABSTRACT

Existing drugs for visceral leishmaniasis (VL) are partially effective, toxic, having high cost and long term treatment. Their efficacies are also compromised due to suppression of immune function associated during the course of infection. Combination therapy including a potential and safe immunostimulant with lower doses of effective drug has proven as a significant approach which is more effective than immunotherapy or drug therapy alone. In the present study, we have used the combination of Pam3Cys (an in-built immunoadjuvant and TLR2 ligand) and miltefosine. Initially dose optimization of both the agents was carried out and after that, antileishmanial effect of their combination was evaluated. All experiments were done in BALB/c mouse model. The immunomodulatory role of Pam3Cys on the immune functions of the host receiving combination treatment was also determined using immunological and biochemical parameters viz. phagocytosis, Th1/Th2 cytokines and production of ROS, RNS and H(2)O(2). Combination group showed significant enhancement in parasitic inhibition as compared to groups receiving miltefosine and Pam3Cys separately. Enhanced production of Th1 cytokines as well as ROS, RNS and H(2)O(2) was witnessed during the study of immunological alterations. Remarkable increase in phagocytosis index was also observed. Thus, the risk of development of drug resistance against miltefosine can be resolved through using low doses of it and Pam3Cys (single-dose) in combination and also provide a promising alternative for cure of leishmaniasis, with a pronounced transformation of the host immune response.


Subject(s)
Antiprotozoal Agents/therapeutic use , Immunologic Factors/therapeutic use , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Lipoproteins/therapeutic use , Phosphorylcholine/analogs & derivatives , Animals , Antiprotozoal Agents/pharmacology , Cricetinae , Cytokines/blood , Dose-Response Relationship, Drug , Drug Therapy, Combination , Female , Humans , Immunity, Cellular , Immunologic Factors/pharmacology , Lipoproteins/pharmacology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Phagocytosis , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
18.
Virus Res ; 319: 198884, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35931226

ABSTRACT

Japanese encephalitis virus (JEV) is a single-stranded positive-sense RNA virus belonging to the Flaviviridae family. The JEV is the leading cause of viral encephalitis in children and the elderly which is spread by mosquitoes. JEV infection has been established in different animal models such as mouse, hamster, guinea pig, swine, rat, monkey, rabbit by using the different routes of inoculations. Here, we have shown that the alpha/beta and gamma -receptor deficient AG129 mouse induces fatal encephalitis in both young and aged old mice, when challenged with high titer JEV Indian clinical isolate by both intraperitoneal and intradermal route. The JEV infected AG129 mouse have shown neurological symptoms, JEV-induced pathological features and supported high level viral replication. Additionally, administration of JEV in AG129 mice resulted in the induction of severe peripheral vascular permeability, which is a major hall mark of Dengue infection but not shown in JEV. Taken together, our results demonstrate interferon α/ß and γ receptors knock out AG129 mouse does not need adaptation of JEV clinical isolates and could be is a promising JEV challenge mouse model by mimicking the natural intradermal route of administration for rapid screening of novel antivirals and vaccines.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Animals , Encephalitis Virus, Japanese/genetics , Guinea Pigs , Mice , Mice, Knockout , Rabbits , Rats , Receptors, Interferon/genetics , Vasodilation
19.
Antimicrob Agents Chemother ; 55(7): 3461-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21537026

ABSTRACT

In view of the severe immunosuppression in visceral leishmaniasis (VL), a rational approach to effectively combat the parasitic scourge would be to enhance the immune status of the host. Use of CpG oligodeoxynucleotide (CpG-ODN) against leishmaniasis has previously been reported, especially as an immunomodulator and adjuvant with various immunogens. In the present study, experiments were carried out with BALB/c mice and hamsters infected with Leishmania donovani. Immunostimulating class B bacterial CpG-ODN namely, ODN-2006, was administered at various doses by the intraperitoneal (i.p.) route. The dose of CpG-ODN-2006 (1 nM/single dose) showing the most antileishmanial activity was given as free and liposomal forms with different doses of miltefosine, namely, 5 and 10 mg/kg of body weight, for 5 days in mice and hamsters, respectively. Among the various groups, mice coadministered liposomal CpG-ODN and miltefosine (5 mg/kg) showed the best inhibitory effect (97% parasite inhibition) compared with free CpG-ODN plus miltefosine and miltefosine, free CpG-ODN, and liposomal CpG-ODN given separately. Similar responses were observed in the case of hamsters, where the combination of liposomal CpG-ODN with miltefosine (10 mg/kg) gave 96% parasite inhibition. Promising antileishmanial efficacy was observed in animals treated with liposomal CpG-ODN and miltefosine.


Subject(s)
Leishmaniasis, Visceral/drug therapy , Oligodeoxyribonucleotides/therapeutic use , Phosphorylcholine/analogs & derivatives , Trypanocidal Agents/therapeutic use , Animals , Cricetinae , Drug Combinations , Female , Leishmaniasis, Visceral/parasitology , Male , Mice , Mice, Inbred BALB C , Phosphorylcholine/therapeutic use
20.
Microbes Infect ; 23(4-5): 104843, 2021.
Article in English | MEDLINE | ID: mdl-34098108

ABSTRACT

COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Vaccination/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Female , Immunity, Cellular , Immunity, Humoral , Injections, Intradermal , Injections, Intramuscular , Male , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL