Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biol Chem ; 295(7): 1915-1925, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31924658

ABSTRACT

Chitin degradation is important for biomass conversion and has potential applications for agriculture, biotechnology, and the pharmaceutical industry. Chitinase A from the Gram-negative bacterium Serratia marcescens (SmChiA) is a processive enzyme that hydrolyzes crystalline chitin as it moves linearly along the substrate surface. In a previous study, the catalytic activity of SmChiA against crystalline chitin was found to increase after the tryptophan substitution of two phenylalanine residues (F232W and F396W), located at the entrance and exit of the substrate binding cleft of the catalytic domain, respectively. However, the mechanism underlying this high catalytic activity remains elusive. In this study, single-molecule fluorescence imaging and high-speed atomic force microscopy were applied to understand the mechanism of this high-catalytic-activity mutant. A reaction scheme including processive catalysis was used to reproduce the properties of SmChiA WT and F232W/F396W, in which all of the kinetic parameters were experimentally determined. High activity of F232W/F396W mutant was caused by a high processivity and a low dissociation rate constant after productive binding. The turnover numbers for both WT and F232W/F396W, determined by the biochemical analysis, were well-replicated using the kinetic parameters obtained from single-molecule imaging analysis, indicating the validity of the reaction scheme. Furthermore, alignment of amino acid sequences of 258 SmChiA-like proteins revealed that tryptophan, not phenylalanine, is the predominant amino acid at the corresponding positions (Phe-232 and Phe-396 for SmChiA). Our study will be helpful for understanding the kinetic mechanisms and further improvement of crystalline chitin hydrolytic activity of SmChiA mutants.


Subject(s)
Bacterial Proteins/ultrastructure , Chitinases/ultrastructure , Molecular Imaging , Mutant Proteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Catalytic Domain/genetics , Chitin/chemistry , Chitin/metabolism , Chitinases/chemistry , Chitinases/genetics , Hydrolysis , Kinetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Phenylalanine/metabolism , Single Molecule Imaging , Substrate Specificity , Surface Properties , Tryptophan/metabolism
2.
J Biol Chem ; 295(43): 14606-14617, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32816991

ABSTRACT

Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.


Subject(s)
Bacterial Proteins/chemistry , Cellulomonas/enzymology , Cellulose 1,4-beta-Cellobiosidase/chemistry , Fungal Proteins/chemistry , Hypocreales/enzymology , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Cellulomonas/chemistry , Cellulomonas/metabolism , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Crystallography, X-Ray , Fungal Proteins/metabolism , Hypocreales/chemistry , Hypocreales/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Substrate Specificity
3.
Biophys J ; 115(12): 2413-2427, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30527446

ABSTRACT

Gold nanoparticles (AuNPs) have been used as a contrast agent for optical imaging of various single biomolecules. Because AuNPs have high scattering efficiency without photobleaching, biomolecular dynamics have been observed with nanometer localization precision and sub-millisecond time resolution. To understand the working principle of biomolecular motors in greater detail, further improvement of the localization precision and time resolution is necessary. Here, we investigated the lower limit of localization precision achievable with AuNPs and the fundamental law, which determines the localization precision. We first used objective-lens-type total internal reflection dark-field microscopy to obtain a scattering signal from an isolated AuNP. The localization precision was inversely proportional to the square root of the photon number, which is consistent with theoretical estimation. The lower limit of precision for a 40 nm AuNP was ∼0.3 nm with 1 ms time resolution and was restricted by detector saturation. To achieve higher localization precision, we designed and constructed an annular illumination total internal reflection dark-field microscopy system with an axicon lens, which can illuminate the AuNPs at high laser intensity without damaging the objective lens. In addition, we used high image magnification to avoid detector saturation. Consequently, we achieved 1.3 Å localization precision for 40 nm AuNPs and 1.9 Å localization precision for 30 nm AuNPs at 1 ms time resolution. Furthermore, even at 33 µs time resolution, localization precisions at 5.4 Å for 40 nm AuNPs and at 1.7 nm for 30 nm AuNPs were achieved. We then observed motion of head of kinesin-1 labeled with AuNP at microsecond time resolution. Transition cycles of bound/unbound states and tethered diffusion of unbound head during stepping motion on microtubule were clearly captured with higher time resolution or smaller AuNP than those used in previous studies, indicating applicability to single-molecule imaging of biomolecular motors.


Subject(s)
Gold/chemistry , Metal Nanoparticles , Microscopy , Kinesins/chemistry , Kinesins/metabolism , Movement , Time Factors
4.
J Biol Chem ; 291(43): 22404-22413, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27609516

ABSTRACT

Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30-40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose/chemistry , Fungal Proteins/chemistry , Trichoderma/enzymology , Cellulose 1,4-beta-Cellobiosidase/genetics , Fungal Proteins/genetics , Protein Domains , Trichoderma/genetics
5.
Mol Biol Rep ; 42(12): 1603-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26514143

ABSTRACT

Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.


Subject(s)
Cell Nucleus/metabolism , Hepatitis B virus/genetics , RNA Splicing , RNA, Viral/chemistry , RNA, Viral/metabolism , Regulatory Sequences, Ribonucleic Acid , Active Transport, Cell Nucleus , Animals , COS Cells , Chlorocebus aethiops , Hep G2 Cells , Humans , Models, Molecular , Nucleic Acid Conformation
6.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853942

ABSTRACT

BimC family proteins are bipolar motor proteins belonging to the kinesin superfamily which promote mitosis by crosslinking and sliding apart antiparallel microtubules. Understanding the binding mechanism between the kinesin and the microtubule is crucial for researchers to make advances in the treatment of cancer and other malignancies. Experimental research has shown that the ion concentration affects the function of BimC significantly. But the insights of the ion-dependent function of BimC remain unclear. By combining molecular dynamics (MD) simulations with a series of computational approaches, we studied the electrostatic interactions at the binding interfaces of BimC and the microtubule under different KCl concentrations. We found the electrostatic interaction between BimC and microtubule is stronger at 0 mM KCl compared to 150 mM KCl, which is consistent with experimental conclusions. Furthermore, important salt bridges and residues at the binding interfaces of the complex were identified, which illustrates the details of the BimC-microtubule interactions. Molecular dynamics analyses of salt bridges identified that the important residues on the binding interface of BimC are positively charged, while those residues on the binding interface of the tubulin heterodimer are negatively charged. The finding in this work reveals some important mechanisms of kinesin-microtubule binding, which helps the future drug design for cancer therapy.

7.
ACS Omega ; 5(41): 26807-26816, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33111007

ABSTRACT

Serratia marcescens chitinase A (SmChiA) processively hydrolyzes recalcitrant biomass crystalline chitin under mild conditions. Here, we combined multiple sequence alignment, site-saturation mutagenesis, and automated protein purification and activity measurement with liquid-handling robot to reduce the number of mutation trials and shorten the screening time for hydrolytic activity improvement of SmChiA. The amino acid residues, which are not conserved in the alignment and are close to the aromatic residues along the substrate-binding sites in the crystal structure, were selected for site-saturation mutagenesis. Using the previously identified highly active F232W/F396W mutant as a template, we identified the F232W/F396W/S538V mutant, which shows further improved hydrolytic activity just by trying eight different sites. Importantly, valine was not found in the multiple sequence alignment at Ser538 site of SmChiA. Our combined approach allows engineering of highly active enzyme mutants, which cannot be identified only by the introduction of predominant amino acid residues in the multiple sequence alignment.

8.
ACS Omega ; 3(7): 7715-7726, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30221239

ABSTRACT

We evaluated a method for protein engineering using plasmid-based one-pot saturation mutagenesis and robot-based automated screening. When the biases in nucleotides and amino acids were assessed for a loss-of-function point mutation in green fluorescent protein, the ratios of gain-of-function mutants were not significantly different from the expected values for the primers among the three different suppliers. However, deep sequencing analysis revealed that the ratios of nucleotides in the primers were highly biased among the suppliers. Biases for NNB were less severe than for NNN. We applied this method to screen a fusion protein of two chitinases, ChiA and ChiB (ChiAB). Three NNB codons as well as tyrosine and serine (X1YSX2X3) were inserted to modify the surface structure of ChiAB. We observed significant amino acid bias at the X3 position in water-soluble, active ChiAB-X1YSX2X3 mutants. Examination of the crystal structure of one active mutant, ChiAB-FYSFV, revealed that the X3 residue plays an important role in structure stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL