Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33568531

ABSTRACT

Recent studies have identified thousands of long noncoding RNAs (lncRNAs) in mammalian genomes that regulate gene expression in different biological processes. Although lncRNAs have been identified in a variety of immune cells and implicated in immune response, the biological function and mechanism of the majority remain unexplored, especially in sepsis. Here, we identify a role for a lncRNA-gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC)-previously characterized for its role in cancer, now in the context of innate immunity, macrophages, and LPS-induced endotoxic shock. Transcriptome analysis of macrophages from humans and mice reveals that GAPLINC is a conserved lncRNA that is highly expressed following macrophage differentiation. Upon inflammatory activation, GAPLINC is rapidly down-regulated. Macrophages depleted of GAPLINC display enhanced expression of inflammatory genes at baseline, while overexpression of GAPLINC suppresses this response. Consistent with GAPLINC-depleted cells, Gaplinc knockout mice display enhanced basal levels of inflammatory genes and show resistance to LPS-induced endotoxic shock. Mechanistically, survival is linked to increased levels of nuclear NF-κB in Gaplinc knockout mice that drives basal expression of target genes typically only activated following inflammatory stimulation. We show that this activation of immune response genes prior to LPS challenge leads to decreased blood clot formation, which protects Gaplinc knockout mice from multiorgan failure and death. Together, our results identify a previously unknown function for GAPLINC as a negative regulator of inflammation and uncover a key role for this lncRNA in modulating endotoxic shock.


Subject(s)
Immunity, Innate , Shock, Septic/immunology , Animals , Cells, Cultured , Female , Humans , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Shock, Septic/etiology , Shock, Septic/genetics , THP-1 Cells , Transcriptome
2.
Elife ; 52016 Feb 15.
Article in English | MEDLINE | ID: mdl-26880555

ABSTRACT

Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.


Subject(s)
Autoimmunity , Gene Expression Regulation , HLA-D Antigens/biosynthesis , HLA-D Antigens/genetics , Polymorphism, Genetic , Dendritic Cells/chemistry , Europe , Humans , Lupus Erythematosus, Systemic/pathology , Membrane Proteins/analysis , United States , White People
3.
PLoS One ; 8(4): e59908, 2013.
Article in English | MEDLINE | ID: mdl-23573220

ABSTRACT

The effect of the cellular reprogramming process per se on mutation load remains unclear. To address this issue, we performed whole exome sequencing analysis of induced pluripotent stem cells (iPSCs) reprogrammed from human cord blood (CB) CD34(+) cells. Cells from a single donor and improved lentiviral vectors for high-efficiency (2-14%) reprogramming were used to examine the effects of three different combinations of reprogramming factors: OCT4 and SOX2 (OS), OS and ZSCAN4 (OSZ), OS and MYC and KLF4 (OSMK). Five clones from each group were subject to whole exome sequencing analysis. We identified 14, 11, and 9 single nucleotide variations (SNVs), in exomes, including untranslated regions (UTR), in the five clones of OSMK, OS, and OSZ iPSC lines. Only 8, 7, and 4 of these, respectively, were protein-coding mutations. An average of 1.3 coding mutations per CB iPSC line is remarkably lower than previous studies using fibroblasts and low-efficiency reprogramming approaches. These data demonstrate that point nucleotide mutations during cord blood reprogramming are negligible and that the inclusion of genome stabilizers like ZSCAN4 during reprogramming may further decrease reprogramming-associated mutations. Our findings provide evidence that CB is a superior source of cells for iPSC banking.


Subject(s)
Fetal Blood/cytology , Induced Pluripotent Stem Cells/physiology , Point Mutation , Animals , Cell Dedifferentiation , Cells, Cultured , Coculture Techniques , DNA Mutational Analysis , Exome , Genomic Instability , Humans , Induced Pluripotent Stem Cells/transplantation , Kruppel-Like Factor 4 , Mice , Mice, Inbred NOD , Mice, SCID , Open Reading Frames , Regenerative Medicine , Teratoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL