Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(23): 12877-12884, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32461358

ABSTRACT

Understanding risks to biodiversity requires predictions of the spatial distribution of species adapting to changing ecosystems and, to that end, Earth observations integrating field surveys prove essential as they provide key numbers for assessing landscape-wide biodiversity scenarios. Here, we develop, and apply to a relevant case study, a method suited to merge Earth/field observations with spatially explicit stochastic metapopulation models to study the near-term ecological dynamics of target species in complex terrains. Our framework incorporates the use of species distribution models for a reasoned estimation of the initial presence of the target species and accounts for imperfect and incomplete detection of the species presence in the study area. It also uses a metapopulation fitness function derived from Earth observation data subsuming the ecological niche of the target species. This framework is applied to contrast occupancy of two species of carabids (Pterostichus flavofemoratus, Carabus depressus) observed in the context of a large ecological monitoring program carried out within the Gran Paradiso National Park (GPNP, Italy). Results suggest that the proposed framework may indeed exploit the hallmarks of spatially explicit ecological approaches and of remote Earth observations. The model reproduces well the observed in situ data. Moreover, it projects in the near term the two species' presence both in space and in time, highlighting the features of the metapopulation dynamics of colonization and extinction, and their expected trends within verifiable timeframes.

2.
Environ Monit Assess ; 196(1): 12, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051448

ABSTRACT

A scientifically informed approach to decision-making is key to ensuring the sustainable management of ecosystems, especially in the light of increasing human pressure on habitats and species. Protected areas, with their long-term institutional mandate for biodiversity conservation, play an important role as data providers, for example, through the long-term monitoring of natural resources. However, poor data management often limits the use and reuse of this wealth of information. In this paper, we share lessons learned in managing long-term data from the Italian Alpine national parks. Our analysis and examples focus on specific issues faced by managers of protected areas, which partially differ from those faced by academic researchers, predominantly owing to different mission, governance, and temporal perspectives. Rigorous data quality control, the use of appropriate data management tools, and acquisition of the necessary skills remain the main obstacles. Common protocols for data collection offer great opportunities for the future, and complete recovery and documentation of time series is an urgent priority. Notably, before data can be shared, protected areas should improve their data management systems, a task that can be achieved only with adequate resources and a long-term vision. We suggest strategies that protected areas, funding agencies, and the scientific community can embrace to address these problems. The added value of our work lies in promoting engagement with managers of protected areas and in reporting and analysing their concrete requirements and problems, thereby contributing to the ongoing discussion on data management and sharing through a bottom-up approach.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Conservation of Natural Resources/methods , Data Management , Environmental Monitoring , Biodiversity
4.
Biology (Basel) ; 11(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35453762

ABSTRACT

Cacyreus marshalli is the only alien butterfly in Europe. It has recently spread in the Gran Paradiso National Park (GPNP), where it could potentially compete with native geranium-consuming butterflies. Our study aimed to (1) assess the main drivers of its distribution, (2) evaluate the potential species distribution in GPNP and (3) predict different scenarios to understand the impact of climate warming and the effect of possible mitigations. Considering different sampling designs (opportunistic and standardised) and different statistical approaches (MaxEnt and N-mixture models), we built up models predicting habitat suitability and egg abundance for the alien species, testing covariates as bioclimatic variables, food plant (Pelargonium spp.) distribution and land cover. A standardised approach resulted in more informative data collection due to the survey design adopted. Opportunistic data could be potentially informative but a major investment in citizen science projects would be needed. Both approaches showed that C. marshalli is associated with its host plant distribution and therefore confined in urban areas. Its expansion is controlled by cold temperatures which, even if the host plant is abundant, constrain the number of eggs. Rising temperatures could lead to an increase in the number of eggs laid, but the halving of Pelargonium spp. populations would mostly mitigate the trend, with a slight countertrend at high elevations.

5.
PLoS One ; 8(11): e81598, 2013.
Article in English | MEDLINE | ID: mdl-24260581

ABSTRACT

Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used) decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence.


Subject(s)
Conservation of Natural Resources , Galliformes/physiology , Models, Statistical , Animals , Climate Change , Computer Simulation , Ecosystem , Female , Humans , Italy , Male , Population Dynamics , Predatory Behavior , Seasons , Snow
SELECTION OF CITATIONS
SEARCH DETAIL