Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
2.
PLoS One ; 8(5): e63300, 2013.
Article in English | MEDLINE | ID: mdl-23696811

ABSTRACT

Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.


Subject(s)
Genome-Wide Association Study/methods , Multiple Sclerosis/genetics , Genotype , Humans , Multiple Sclerosis/metabolism , Protein Binding
3.
Expert Rev Clin Immunol ; 6(3): 481-90, 2010 May.
Article in English | MEDLINE | ID: mdl-20441432

ABSTRACT

Multiple sclerosis (MS) is a disorder of the CNS with inflammatory and neurodegenerative components. The etiology is unknown, but there is evidence for a role of both genetic and environmental factors. Among the heritable factors, MHC class II genes are strongly involved, as well as genes coding for others molecules of immunological relevance, genes controlling neurobiological pathways and genes of unknown function. Among nonheritable factors, many infectious agents (mainly viruses) and environmental factors (e.g., smoke, sun exposition and diet) seem to be of etiologic importance. Here, we report and discuss recent findings in MS on largely unexplored fields: the alternative splicing of mRNAs and regulatory noncoding RNAs, the major sources of transcriptome diversity; and epigenetic changes with special attention paid to DNA methylation and histone acetylation, the main regulators of gene expression.


Subject(s)
Genes, MHC Class II/genetics , Genes, MHC Class II/immunology , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Acetylation , Alternative Splicing , Animals , DNA Methylation , Epigenesis, Genetic , Genetic Loci , Genetic Predisposition to Disease , Histones/genetics , Histones/immunology , Histones/metabolism , Humans , Mice , RNA, Untranslated/genetics , RNA, Untranslated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL