Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38971152

ABSTRACT

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.

2.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32445698

ABSTRACT

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Subject(s)
Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
3.
Nature ; 609(7929): 1021-1028, 2022 09.
Article in English | MEDLINE | ID: mdl-36131014

ABSTRACT

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Subject(s)
Cell Differentiation , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Cell Differentiation/genetics , Cell Lineage , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Cerebellum/pathology , Core Binding Factor alpha Subunits/genetics , Hedgehog Proteins/metabolism , Histone Demethylases , Humans , Ki-67 Antigen/metabolism , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Metencephalon/embryology , Metencephalon/pathology , Muscle Proteins , Mutation , Otx Transcription Factors/deficiency , Otx Transcription Factors/genetics , Repressor Proteins , T-Box Domain Proteins/metabolism , Transcription Factors
4.
Nature ; 572(7767): 67-73, 2019 08.
Article in English | MEDLINE | ID: mdl-31043743

ABSTRACT

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Evolution, Molecular , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Animals , Cerebellar Neoplasms/classification , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/metabolism , Child , Female , Fetus/cytology , Glioma/classification , Glioma/genetics , Glioma/pathology , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Time Factors , Transcriptome/genetics
5.
Nature ; 574(7780): 707-711, 2019 10.
Article in English | MEDLINE | ID: mdl-31664194

ABSTRACT

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Subject(s)
Cerebellar Neoplasms/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , RNA, Small Nuclear/genetics , Adolescent , Adult , Alternative Splicing , Hedgehog Proteins/metabolism , Humans , Mutation , RNA Splice Sites , RNA Splicing
7.
BJU Int ; 122(2): 326-336, 2018 08.
Article in English | MEDLINE | ID: mdl-29542855

ABSTRACT

OBJECTIVE: To test if Raman spectroscopy (RS) is an appropriate tool for the diagnosis and possibly grading of prostate cancer (PCa). PATIENTS AND METHODS: Between 20 and 50 Raman spectra were acquired from 32 fresh and non-processed post-prostatectomy specimens using a macroscopic handheld RS probe. Each measured area was characterized and categorized according to histopathological criteria: tissue type (extraprostatic or prostatic); tissue malignancy (benign or malignant); cancer grade (Grade Groups [GGs] 1-5); and tissue glandular level. The data were analysed using machine-learning classification with neural network. RESULTS: The RS technique was able to distinguish prostate from extraprostatic tissue with a sensitivity of 82% and a specificity of 83% and benign from malignant tissue with a sensitivity of 87% and a specificity of 86%. In an exploratory fashion, RS differentiated benign from GG1 in 726/801 spectra (91%; sensitivity 80%, specificity 91%), from GG2 in 588/805 spectra (73%; sensitivity 76%, specificity 73%), from GG3 in 670/797 spectra (84%; sensitivity 86%, specificity 84%), from GG4 in 711/802 spectra (88%; sensitivity 77%, specificity 89%) and from GG5 in 729/818 spectra (89%; sensitivity 90%, specificity 89%). CONCLUSION: Current diagnostic approaches of PCa using needle biopsies have suboptimal cancer detection rates and a significant risk of infection. Standard non-targeted random sampling results in false-negative biopsies in 15-30% of patients, which affects clinical management. RS, a non-destructive tissue interrogation technique providing vibrational molecular information, resolved the highly complex architecture of the prostate and detect cancer with high accuracy using a fibre optic probe to interrogate radical prostatectomy (RP) specimens from 32 patients (947 spectra). This proof-of-principle paves the way for the development of in vivo tumour targeting spectroscopy tools for informed biopsy collection to address the clinical need for accurate PCa diagnosis and possibly to improve surgical resection during RP as a complement to histopathological analysis.


Subject(s)
Prostate/pathology , Prostatic Neoplasms/pathology , Spectrum Analysis, Raman/methods , Aged , Fiber Optic Technology , Humans , Male , Middle Aged , ROC Curve , Sensitivity and Specificity , Specimen Handling , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/standards , Vibration
8.
BMC Cancer ; 14: 801, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25367122

ABSTRACT

BACKGROUND: Resistance to apoptosis induced by anti-cancer drugs is a major obstacle for the treatment of aggressive forms of breast cancer. Galectin-7 (gal-7) was recently shown to be specifically expressed in basal-like but not in luminal subtypes of human breast cancer. METHODS: We generated a mutant form of gal-7 (R74S). Arginine 74 is the structural equivalent of arginine 186 found in human galectin-3. Mutation R186S was previously shown to abolish the biological function of galectin-3. RESULTS: Mutation of arginine 74 induced only limited and local changes to the gal-7 fold. Recombinant forms of R74S and wtgal-7 were also equally effective at forming dimers in solution. Analysis of the thermodynamic parameters by isothermal titration calorimetry (ITC) indicated, however, that binding of lactose to gal-7 was inhibited by the R74S mutation. Using confocal microscopy and electron microscopy, we confirmed the expression of gal-7 in the cytosolic and nuclear compartments of breast cancer cells and the ability of gal-7 to translocate to mitochondria. The mutation at position 74, however, greatly reduced the expression of gal-7 in the nuclear and mitochondrial compartments. Interestingly, cells expressing mutated gal-7 were equally if not even more resistant to drug-induced apoptosis when compared to cells expressing wtgal-7. We also found that both wtgal-7 and R74S inhibited dox-induced PARP-1 cleavage and p53 protein expression. The inhibition of p53 correlated with a decrease in p21 protein expression and CDKN1A mRNA. Furthermore, analysis of nuclear and cytoplasmic fractions showed that both wild type and R74S mutant gal-7 inhibited p53 nuclear translocation, possibly by increasing degradation of cytosolic p53. CONCLUSIONS: These findings pose a challenge to the paradigm that has guided the design of galectin-specific inhibitors for the treatment of cancer. This study suggests that targeting CRD-independent cytosolic gal-7 in breast cancer cells may be a valuable strategy for the treatment of this disease. Our study will thus complement efforts towards improving selectivity of targeted anticancer agents.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Galectins/genetics , Galectins/metabolism , Tumor Suppressor Protein p53/metabolism , Breast Neoplasms/ultrastructure , Cell Line, Tumor , Female , Galectins/chemistry , Gene Expression Regulation, Neoplastic , Humans , Intracellular Space/metabolism , Models, Molecular , Mutation , Protein Conformation , Protein Transport , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
9.
Genome Biol ; 25(1): 27, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243313

ABSTRACT

Existing RNA velocity estimation methods strongly rely on predefined dynamics and cell-agnostic constant transcriptional kinetic rates, assumptions often violated in complex and heterogeneous single-cell RNA sequencing (scRNA-seq) data. Using a graph convolution network, DeepVelo overcomes these limitations by generalizing RNA velocity to cell populations containing time-dependent kinetics and multiple lineages. DeepVelo infers time-varying cellular rates of transcription, splicing, and degradation, recovers each cell's stage in the differentiation process, and detects functionally relevant driver genes regulating these processes. Application to various developmental and pathogenic processes demonstrates DeepVelo's capacity to study complex differentiation and lineage decision events in heterogeneous scRNA-seq data.


Subject(s)
Deep Learning , Gene Expression Profiling , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , RNA/genetics , Cell Differentiation/genetics , Single-Cell Analysis/methods
10.
Nat Commun ; 15(1): 270, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191555

ABSTRACT

Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Proteomics , Cerebellum , Cerebellar Neoplasms/genetics
11.
Emerg Med Int ; 2023: 5931502, 2023.
Article in English | MEDLINE | ID: mdl-37260778

ABSTRACT

Background: Stroke is the main cause of disability and exitus worldwide. The prediction of mortality of this pathology represents a major challenge. More than that, the infection with the SARS-CoV-2 virus is a challenge for every clinician worldwide, and hypercoagulability is one of its biggest concerns that can lead to stroke. Objective: Our aim was to develop a severity stroke index for both SARS-CoV-2 stroke patients and noninfected stroke patients which we hope to be helpful in patient's management. Methods: We conducted a prospective study during January 2021-June 2021 which included 80 patients who suffered an ischemic stroke, 40 of which had both stroke and SARS-CoV-2 infection. We have established a panel of biomarkers including CRP, IL-6, fibrinogen, ESR, D-dimer, leucocytes, lymphocytes, and NLR and compared the results of our two cohorts. Results: SARS-CoV-2 stroke patients have experienced elevated levels of biomarkers that rise in inflammation such as hs-CRP, IL-6, and D-dimer, comparing to noninfected stroke patients. Also, the probability of exitus in SARS-CoV-2 patients is 4.2 times higher than in noninfected subjects. With regard to stroke severity, we have concluded that a NIHSS score higher than 15 points considerably influences the death rate, the probability of exitus being 9.16 times higher than in NIHSS score lower than 15. Conclusion: Based on our result, we have established a severity score index which includes NIHSS score, age, gender, the presence/absence of COVID-19 infection, and the following biomarkers: hs-PCR, IL-6, D-dimer, fibrinogen, and ESR, which can be used as a tool to guide patient's management.

12.
Nat Commun ; 13(1): 4178, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853870

ABSTRACT

Human cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.5 to postnatal day 365, performing single-cell transcriptomics on >100,000 cells. By comparing this reference atlas to single-cell data from >100 glial tumours of the adult and paediatric human cerebrum, we find that tumour cells have an expression signature that overlaps with temporally restricted, embryonic radial glial precursors (RGPs) and their immediate sublineages. Further, we demonstrate that prenatal transformation of RGPs in a genetic mouse model gives rise to adult cerebral tumours that show an embryonic/juvenile RGP identity. Together, these findings implicate the acquisition of embryonic-like states in the genesis of adult glioma, providing insight into the origins of human glioma, and identifying specific developmental cell types for therapeutic targeting.


Subject(s)
Cerebrum , Glioma , Animals , Brain , Child , Glioma/genetics , Humans , Mice , Neurogenesis , Telencephalon
13.
Nat Genet ; 54(12): 1865-1880, 2022 12.
Article in English | MEDLINE | ID: mdl-36471070

ABSTRACT

Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.


Subject(s)
Chromatin , Epigenomics , Cell Lineage/genetics , Brain
14.
Nat Commun ; 12(1): 1749, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741928

ABSTRACT

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.


Subject(s)
Cerebellar Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Transcriptome , Adolescent , Adult , Child , Child, Preschool , Female , Gene Regulatory Networks , Genetic Variation , Humans , Infant , Male , Middle Aged , Signal Transduction/genetics , Young Adult
15.
Cell Rep ; 31(2): 107511, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294450

ABSTRACT

Medulloblastoma (MB) is a neoplasm linked to dysregulated cerebellar development. Previously, we demonstrated that the Sonic Hedgehog (SHH) subgroup grows hierarchically, with Sox2+ cells at the apex of tumor progression and relapse. To test whether this mechanism is rooted in a normal developmental process, we studied the role of Sox2 in cerebellar development. We find that the external germinal layer (EGL) is derived from embryonic Sox2+ precursors and that the EGL maintains a rare fraction of Sox2+ cells during the first postnatal week. Through lineage tracing and single-cell analysis, we demonstrate that these Sox2+ cells are within the Atoh1+ lineage, contribute extensively to adult granule neurons, and resemble Sox2+ tumor cells. Critically, constitutive activation of the SHH pathway leads to their aberrant persistence in the EGL and rapid tumor onset. We propose that failure to eliminate this rare but potent developmental population is the tumor initiation mechanism in SHH-subgroup MB.


Subject(s)
Medulloblastoma/etiology , Medulloblastoma/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cell Lineage/genetics , Cells, Cultured , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Female , Hedgehog Proteins/metabolism , Humans , Male , Mice, Knockout , Mice, Transgenic , Neoplasm Recurrence, Local/pathology , Neural Stem Cells/metabolism , Neurogenesis , Neurons/metabolism , SOXB1 Transcription Factors/physiology , Signal Transduction/physiology , Single-Cell Analysis/methods
16.
Nat Commun ; 11(1): 3627, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686664

ABSTRACT

OTX2 is a potent oncogene that promotes tumor growth in Group 3 medulloblastoma. However, the mechanisms by which OTX2 represses neural differentiation are not well characterized. Here, we perform extensive multiomic analyses to identify an OTX2 regulatory network that controls Group 3 medulloblastoma cell fate. OTX2 silencing modulates the repressive chromatin landscape, decreases levels of PRC2 complex genes and increases the expression of neurodevelopmental transcription factors including PAX3 and PAX6. Expression of PAX3 and PAX6 is significantly lower in Group 3 medulloblastoma patients and is correlated with reduced survival, yet only PAX3 inhibits self-renewal in vitro and increases survival in vivo. Single cell RNA sequencing of Group 3 medulloblastoma tumorspheres demonstrates expression of an undifferentiated progenitor program observed in primary tumors and characterized by translation/elongation factor genes. Identification of mTORC1 signaling as a downstream effector of OTX2-PAX3 reveals roles for protein synthesis pathways in regulating Group 3 medulloblastoma pathogenesis.


Subject(s)
Carcinogenesis/genetics , Cerebellar Neoplasms , Medulloblastoma , Otx Transcription Factors/metabolism , PAX3 Transcription Factor/genetics , Animals , Carcinogenesis/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Neoplastic Stem Cells/metabolism , Oncogenes , PAX3 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Signal Transduction/genetics
17.
Nat Med ; 26(5): 720-731, 2020 05.
Article in English | MEDLINE | ID: mdl-32341580

ABSTRACT

Recurrent medulloblastoma and ependymoma are universally lethal, with no approved targeted therapies and few candidates presently under clinical evaluation. Nearly all recurrent medulloblastomas and posterior fossa group A (PFA) ependymomas are located adjacent to and bathed by the cerebrospinal fluid, presenting an opportunity for locoregional therapy, bypassing the blood-brain barrier. We identify three cell-surface targets, EPHA2, HER2 and interleukin 13 receptor α2, expressed on medulloblastomas and ependymomas, but not expressed in the normal developing brain. We validate intrathecal delivery of EPHA2, HER2 and interleukin 13 receptor α2 chimeric antigen receptor T cells as an effective treatment for primary, metastatic and recurrent group 3 medulloblastoma and PFA ependymoma xenografts in mouse models. Finally, we demonstrate that administration of these chimeric antigen receptor T cells into the cerebrospinal fluid, alone or in combination with azacytidine, is a highly effective therapy for multiple metastatic mouse models of group 3 medulloblastoma and PFA ependymoma, thereby providing a rationale for clinical trials of these approaches in humans.


Subject(s)
Brain Neoplasms/therapy , Cancer Vaccines/administration & dosage , Cerebrospinal Fluid/drug effects , Ependymoma/therapy , Immunotherapy, Adoptive/methods , Medulloblastoma/therapy , Animals , Brain Neoplasms/cerebrospinal fluid , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/therapy , Cerebrospinal Fluid/immunology , Child , Child, Preschool , Drug Delivery Systems/methods , Ependymoma/cerebrospinal fluid , Ependymoma/immunology , Ependymoma/pathology , Female , HEK293 Cells , Humans , Infant , Injections, Intraventricular , Male , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice , Neoplasm Metastasis , Receptors, Chimeric Antigen/administration & dosage , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
Nat Commun ; 10(1): 5829, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31863004

ABSTRACT

Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously.


Subject(s)
Cerebellar Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Hedgehog Proteins/antagonists & inhibitors , Medulloblastoma/genetics , Signal Transduction/genetics , Anilides/pharmacology , Anilides/therapeutic use , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/pathology , Cerebellum/cytology , Cerebellum/pathology , Female , Gain of Function Mutation , Hedgehog Proteins/genetics , Humans , Male , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Mice, Transgenic , Molecular Targeted Therapy/methods , MyoD Protein/genetics , Neoplastic Stem Cells/drug effects , Pyridines/pharmacology , Pyridines/therapeutic use , RNA-Seq , Signal Transduction/drug effects , Single-Cell Analysis , Smoothened Receptor/genetics , Transcription Factor HES-1/genetics
19.
Cancer Cell ; 36(3): 302-318.e7, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31474569

ABSTRACT

Progenitor heterogeneity and identities underlying tumor initiation and relapse in medulloblastomas remain elusive. Utilizing single-cell transcriptomic analysis, we demonstrated a developmental hierarchy of progenitor pools in Sonic Hedgehog (SHH) medulloblastomas, and identified OLIG2-expressing glial progenitors as transit-amplifying cells at the tumorigenic onset. Although OLIG2+ progenitors become quiescent stem-like cells in full-blown tumors, they are highly enriched in therapy-resistant and recurrent medulloblastomas. Depletion of mitotic Olig2+ progenitors or Olig2 ablation impeded tumor initiation. Genomic profiling revealed that OLIG2 modulates chromatin landscapes and activates oncogenic networks including HIPPO-YAP/TAZ and AURORA-A/MYCN pathways. Co-targeting these oncogenic pathways induced tumor growth arrest. Together, our results indicate that glial lineage-associated OLIG2+ progenitors are tumor-initiating cells during medulloblastoma tumorigenesis and relapse, suggesting OLIG2-driven oncogenic networks as potential therapeutic targets.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Medulloblastoma/genetics , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Neuroglia/pathology , Animals , Brain Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/pathology , Child, Preschool , Datasets as Topic , Disease Models, Animal , Female , Gene Knockdown Techniques , Gene Regulatory Networks , Hedgehog Proteins/metabolism , Humans , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Mice, Transgenic , Neoplasm Recurrence, Local/pathology , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Prognosis , RNA-Seq , Signal Transduction/genetics , Single-Cell Analysis , Survival Analysis , Transcriptome
20.
Nat Genet ; 51(12): 1702-1713, 2019 12.
Article in English | MEDLINE | ID: mdl-31768071

ABSTRACT

Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined the regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage and embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while group 2a/b atypical teratoid/rhabdoid tumors may originate outside the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies that mirror transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain/embryology , Gene Expression Regulation, Developmental , Animals , Brain/pathology , Cell Line, Tumor , Humans , Infant , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Nerve Fibers/pathology , Nerve Fibers/physiology , Prosencephalon/cytology , Prosencephalon/embryology , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL