Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Emerg Infect Dis ; 30(11): 2385-2390, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39322418

ABSTRACT

We studied a community cluster of 25 mpox cases in Vietnam caused by emerging monkeypox virus sublineage C.1 and imported into Vietnam through 2 independent events; 1 major cluster carried a novel APOBEC3-like mutation. Three patients died; all had advanced HIV co-infection. Viral evolution and its potential consequences should be closely monitored.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Phylogeny , Vietnam/epidemiology , Humans , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Mpox (monkeypox)/transmission , Monkeypox virus/genetics , Monkeypox virus/classification , Male , Female , Adult , Middle Aged , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/epidemiology , HIV Infections/transmission , HIV Infections/virology , HIV Infections/epidemiology , History, 21st Century , Mutation , Coinfection/virology
2.
Article in English | MEDLINE | ID: mdl-39153061

ABSTRACT

The aim of this work was to evaluate the conformity of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), and verify the accuracy of the planning and delivery system used in this work based on the AAPM TG-119 protocol. The Eclipse 13.6 treatment planning system (TPS) was used to plan the TG-119 test suite, which included four test cases: MultiTarget, Prostate, Head/Neck, and C-Shape for IMRT and VMAT techniques with 6 MV and 10 MV acceleration voltages. The results were assessed and discussed in terms of the TG-119 protocol and the results of previous studies. In addition, point dose and planar dose measurements were done using a semiflex ion chamber and an electronic portal imaging device (EPID), respectively. The planned doses of all test cases met the criteria of the TG-119 protocol, except those for the spinal cord of the C-Shape hard case. There were no significant differences between the treatment planning doses and the doses given in the TG-119 report, with p-values ranging from 0.974 to 1 (p > 0.05). Doses to the target volumes were similar in the IMRT and VMAT plans, but the organs at risk (OARs) doses were different depending on the test case. The planning results showed that IMRT is more conformal than VMAT in certain cases. For the point dose measurements, the confidence limit (CLpoint) of 0.030 and 0.021 were better than the corresponding values of 0.045 and 0.047 given in the TG-119 report for high-dose and low-dose areas, respectively. Regarding the planar dose measurements, the CLplanar value of 0.38 obtained in this work was lower than that given in the TG-119 report (12.4). It is concluded that the dosimetry measurements performed in this study showed better confidence limits than those provided in the TG 119 report. IMRT remains more conformal in certain circumstances than the more progressive VMAT. When selecting the method of delivering a dose to the patient, several factors must be considered, including the radiotherapy technique, energy, treatment site, and tumour geometry.

3.
Sensors (Basel) ; 24(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39204875

ABSTRACT

A scanning acoustic microscopy (SAM) system is a common non-destructive instrument which is used to evaluate the material quality in scientific and industrial applications. Technically, the tested sample is immersed in water during the scanning process. Therefore, a robot arm is incorporated into the SAM system to transfer the sample for in-line inspection, which makes the system complex and increases time consumption. The main aim of this study is to develop a novel water probe for the SAM system, that is, a waterstream. During the scanning process, water was supplied using a waterstream instead of immersing the sample in the water, which leads to a simple design of an automotive SAM system and a reduction in time consumption. In addition, using a waterstream in the SAM system can avoid contamination of the sample due to immersion in water for long-time scanning. Waterstream was designed based on the measured focal length calculation of the transducer and simulated to investigate the internal flow characteristics. To validate the simulation results, the waterstream was prototyped and applied to the TSAM-400 and W-FSAM traditional and fast SAM systems to successfully image some samples such as carbon fiber-reinforced polymers, a printed circuit board, and a 6-inch wafer. These results demonstrate the design method of the water probe applied to the SAM system.

4.
Int J Med Sci ; 19(11): 1638-1647, 2022.
Article in English | MEDLINE | ID: mdl-36237993

ABSTRACT

Background: Thymic epithelial tumors (TETs) are clinically the most frequently encountered neoplasm of the prevascular mediastinum in adults. The role of chest magnetic resonance (MR) imaging has been increasingly stressed thanks to its excellent contrast resolution, freedom from ionizing radiation, and capability to provide additional information regarding tumors' cellular structure and vascularity. Methods: This study aimed to establish the relationship between the MR findings and pathological classification of TETs, focusing on diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) imaging. This retrospective cross-sectional study included 44 TET patients who underwent chest MR scanning. The tumors were classified into three groups according to the WHO classification: low-risk thymoma (LRT), high-risk thymoma (HRT), and non-thymoma (NT). Along with morphological characteristics, the apparent diffusion coefficient (ADC) value, time-intensity curve (TIC) pattern, and time to peak enhancement (TTP) of the tumors were recorded and compared between the three groups. Results: A smooth contour and complete or almost complete capsule were suggestive of LRTs. The median ADC value of the 44 tumors was 0.95 × 10-3 mm2/sec. Among the three groups, LRTs had the highest ADC values, while NTs had the lowest. The differences between the ADC values of the three groups were statistically significant (p = 0.006). Using an ADC cutoff of 0.82 × 10-3 mm2/sec to differentiate between LRTs and tumors of the two remaining groups, the area under the curve was 0.775, sensitivity was 100%, specificity was 50%, and accuracy was 65.91%. The washout (type 3) TIC pattern was the most prevalent, accounting for 45.45% of the population; this pattern was also predominantly observed in LRTs (71.43%). Although the median TTP of LRTs was lower than that of HRTs or NTs, no statistically significant differences were found between the TTPs of the three groups (p = 0.170). Conclusions: MR is a good imaging modality to preoperatively assess TETs. Morphological features, ADC value, TIC pattern, and TTP are helpful in preoperatively predicting TET pathology.


Subject(s)
Neoplasms, Glandular and Epithelial , Adult , Contrast Media , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging/methods , Neoplasms, Glandular and Epithelial/diagnostic imaging , Retrospective Studies , Thymus Neoplasms
5.
PLoS One ; 19(7): e0306616, 2024.
Article in English | MEDLINE | ID: mdl-38968231

ABSTRACT

Nowadays, environmental issues and cleaner products are interest to many customers, considering whether to buy or continue using a product. This will affect the perception, attitude of upper managers in the process of strategic choices and operational management behavior. This study is based on the Upper Echelon Theory, research under the influence of customer pressure to attitude toward the environmental, decision choices for cleaner production strategies, implementation of environmental management accounting towards achieving green competitive advantage of Vietnamese manufacturing enterprises. In addition, the role of two moderator variables: (1) perceived benefit of cleaner production strategies and (2) perceived benefit of environmental management accounting in the research model is also considered. This study surveyed 234 CEOs of Vietnamese manufacturing enterprises. This study employed PLS-SEM, version 3 for data analysis. Results have shown that all relationships are statistically significant. Moderator variables have a statistically significant and positive impact in relationships in which they play a moderator role. This study helps CEOs realize the importance of producing products that are customer-oriented, environmentally friendly, and the implementation of environmental management accounting will have a strong impact on achieving a sustainable competitive advantage.


Subject(s)
Consumer Behavior , Humans , Vietnam , Conservation of Natural Resources/methods , Surveys and Questionnaires , Male , Female , Adult
6.
Heliyon ; 10(13): e33565, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035526

ABSTRACT

Environmental management accounting (EMA) has positive support for providing information for green competitive advantage. Based on upper echelons theory (UET), this study examines the impact of upper managers' attitudes towards the environment regarding the choice of green production strategy, EMA implementation, and green competitive advantage (GCA). The moderating role of regulatory pressure (RP) in some relationships is also investigated. This study, conducted in Vietnam, features a data set of 234 medium and large manufacturers. The sample is restricted to medium and large firms only, as these possess sufficient financial resources to operate independent marketing and management accounting functions. Partial Least Squares Structural Equation Modeling (PLS-SEM) is used to test hypotheses. We found that it has a significant positive and direct effect of attitude towards the environment on choosing a green production strategy and the implementation of EMA, thereby achieving a green competitive advantage. We also find that regulatory pressures have a moderator role and are positive in some relationships. This study applied UET in the management accounting field and presented the significance of the compatibility between upper managers' attitudes towards the environment, strategies, and EMA implementation that would improve the long-term competitive advantage of the organizations.

7.
Waste Manag ; 190: 24-34, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265429

ABSTRACT

Thermochemical conversion, including hydrothermal processing, pyrolysis and incineration, has become a promising technology for sewage sludge (SS) treatment and disposal. Furthermore, acid leaching is considered as an effective method to recover phosphorus (P) from SS and its thermochemical treatment products. This study has investigated the potential of P reclamation from SS and its thermochemical derivatives, including hydrochar (HC), biochar (BC), and SS incinerated ash (SA). Comparative analyses of physicochemical properties of these derivatives revealed a decrease in hydroxyl and aromatic groups and an increase in aliphatic and oxygen-containing functional groups in HC and BC. Leaching experiments using 1 M sulfuric acid (H2SO4) and 1 M oxalic acid (C2H2O4) suggested that H2SO4 slightly outperformed C2H2O4 in terms of P leaching efficiency. HC achieved 79.1 % optimal leaching efficiency in 60 min using H2SO4, while BC, SS, and SA required 360 min to achieve comparable efficiency. SS and BC reached optimal leaching efficiency at 74.1 % and 76.2 % in H2SO4, while SA achieved 80.9 % in C2H2O4. Importantly, HC and SA are more favorable for P extraction using acid leaching, whereas BC tends to be a potential P carrier. Time-dependent kinetics revealed a two-stage leaching process, i.e., fast and slow reaction stages. Shrinking core model indicates product layer diffusion as the primary rate-limiting step in both stages. Overall, these fundamental insights play an important role in practical P recovery through acid leaching of SS derived residues after thermochemical treatment.

8.
PLoS One ; 19(3): e0300969, 2024.
Article in English | MEDLINE | ID: mdl-38551952

ABSTRACT

This study employed novel extraction methods with natural deep eutectic solvents (NADES) to extract bioactive compounds and proteins from Bacopa monnieri leaves. The conditional influence of ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic-assisted extraction (EAE) on the recovery efficiency of phenolics, proteins, flavonoids, and terpenoids was evaluated. The conditions of UAE were 50 mL/g LSR, 600W of ultrasonic power, and 30% water content with 40°C for 1 min to obtain the highest bioactive compounds and protein contents. The conditions of MAE were 40 mL/g LSR, 400W of microwave power with 30% water content for 3 min to reach the highest contents of biological compounds. The conditions of EAE were 30 mL/g of LSR, 20 U/g of enzyme concentration with L-Gly-Na molar ratio at 2:4:1, and 40% water content for 60 min to acquire the highest bioactive compound contents. Scanning electron microscopy (SEM) is employed to analyze the surface of Bacopa monnieri leaves before and after extraction. Comparing seven extraction methods was conducted to find the most favorable ones. The result showed that the UMEAE method was the most effective way to exploit the compounds. The study suggested that UMEAE effectively extracts phenolics, flavonoids, terpenoids, and protein from DBMP.


Subject(s)
Bacopa , Plant Extracts , Deep Eutectic Solvents , Solvents , Flavonoids , Water , Phenols , Terpenes
9.
Sci Rep ; 14(1): 14798, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926427

ABSTRACT

Muscle ultrasound has been shown to be a valid and safe imaging modality to assess muscle wasting in critically ill patients in the intensive care unit (ICU). This typically involves manual delineation to measure the rectus femoris cross-sectional area (RFCSA), which is a subjective, time-consuming, and laborious task that requires significant expertise. We aimed to develop and evaluate an AI tool that performs automated recognition and measurement of RFCSA to support non-expert operators in measurement of the RFCSA using muscle ultrasound. Twenty patients were recruited between Feb 2023 and July 2023 and were randomized sequentially to operators using AI (n = 10) or non-AI (n = 10). Muscle loss during ICU stay was similar for both methods: 26 ± 15% for AI and 23 ± 11% for the non-AI, respectively (p = 0.13). In total 59 ultrasound examinations were carried out (30 without AI and 29 with AI). When assisted by our AI tool, the operators showed less variability between measurements with higher intraclass correlation coefficients (ICCs 0.999 95% CI 0.998-0.999 vs. 0.982 95% CI 0.962-0.993) and lower Bland Altman limits of agreement (± 1.9% vs. ± 6.6%) compared to not using the AI tool. The time spent on scans reduced significantly from a median of 19.6 min (IQR 16.9-21.7) to 9.4 min (IQR 7.2-11.7) compared to when using the AI tool (p < 0.001). AI-assisted muscle ultrasound removes the need for manual tracing, increases reproducibility and saves time. This system may aid monitoring muscle size in ICU patients assisting rehabilitation programmes.


Subject(s)
Critical Illness , Intensive Care Units , Muscular Atrophy , Ultrasonography , Humans , Male , Ultrasonography/methods , Female , Middle Aged , Aged , Muscular Atrophy/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Quadriceps Muscle/diagnostic imaging , Artificial Intelligence , Adult
10.
Bull Cancer ; 111(4): 393-415, 2024 Apr.
Article in French | MEDLINE | ID: mdl-38418334

ABSTRACT

OBJECTIVES: The management of upper aerodigestive tract cancers is a complex specialty. It is essential to provide an update to establish optimal care. At the initiative of the INCa and under the auspices of the SFORL, the scientific committee, led by Professor Béatrix Barry, Dr. Gilles Dolivet, and Dr. Dominique De Raucourt, decided to develop a reference framework aimed at defining, in a scientific and consensus-based manner, the general principles of treatment for upper aerodigestive tract cancers applicable to all sub-locations. METHODOLOGY: To develop this framework, a multidisciplinary team of practitioners was formed. A systematic analysis of the literature was conducted to produce recommendations classified by grades, in accordance with the standards of the French National Authority for Health (HAS). RESULTS: The grading of recommendations according to HAS standards has allowed the establishment of a reference for patient care based on several criteria. In this framework, patients benefit from differentiated care based on prognostic factors they present (age, comorbidities, TNM status, HPV status, etc.), conditions of implementation, and quality criteria for indicated surgery (operability, resectability, margin quality, mutilation, salvage surgery), as well as quality criteria for radiotherapy (target volume, implementation time, etc.). The role of medical and postoperative treatments was also evaluated based on specific criteria. Finally, supportive care must be organized from the beginning and throughout the patients' care journey. CONCLUSION: All collected data have led to the development of a comprehensive framework aimed at harmonizing practices nationally, facilitating decision-making in multidisciplinary consultation meetings, promoting equality in practices, and providing a state-of-the-art and reference practices for assessing the quality of care. This new framework is intended to be updated every 5 years to best reflect the latest advances in the field.


Subject(s)
Carcinoma, Squamous Cell , Humans , Carcinoma, Squamous Cell/therapy , Gastrointestinal Tract
11.
Water Res ; 245: 120672, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37783176

ABSTRACT

Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180-300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC-MS) was further complementarily applied with GC-MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Microplastics , Plastics/chemistry , Metals, Heavy/chemistry , Sewage/chemistry , Polyethylene , Polypropylenes , Nylons , Water , Weight Loss , Water Pollutants, Chemical/analysis
12.
ACS Omega ; 8(37): 33870-33882, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744855

ABSTRACT

This study optimized the ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE) processes to acquire phenolics and flavonoids from passion fruit peels using a mixture of ethanol, acetone, and water. An augmented simplex-centroid design was employed to find the suitable volume ratio among solvent ingredients to attain the highest extraction yield of phenolics and flavonoids. One-factor experiments were conducted to investigate the influence of UAE and MAE parameters on the recovery yield of phenolics and flavonoids before the two processes were optimized using Box-Behnken Design (BBD) models. The optimal UAE conditions for recovering phenolics and flavonoids from passion fruit peel powder (PFP) were 28 mL/g of liquid-to-solid ratio (LSR), 608 W of ultrasonic power, and 63 °C for 20 min to acquire total phenolic content (TPC) and total flavonoid content (TFC) at 39.38 mg of gallic acid equivalents per gram of dried basis (mg GAE/g db) and 25.79 mg of rutin equivalents per gram of dried basis (mg RE/g db), respectively. MAE conditions for attaining phenolics and flavonoids from PFP were 26 mL/g of LSR and 606 W of microwave power for 2 min to recover TPC and TFC at 17.74 mg GAE/g db and 8.11 mg RE/g db, respectively. The second-order kinetic model was employed to determine the UAE and MAE mechanism of TPC and TFC and the thermodynamic parameters of the extraction processes. The antioxidant activities of passion fruit peel extracts at optimal conditions were examined to compare the efficiency of UAE and MAE. This study establishes an effective approach for obtaining phenolics and flavonoids from passion fruit peels.

13.
ACS Omega ; 8(32): 29704-29716, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599925

ABSTRACT

This research extracted phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr roots using natural deep eutectic solvent-based novel extraction techniques. Twelve natural deep eutectic solvents (NADESs) were produced for recovering phenolics and terpenoids. Citric acid/glucose and lactic acid/glucose, with a molar ratio of 2:1, were determined as the most appropriate NADESs for extracting phenolics and terpenoids, respectively. Afterward, the proper conditions for NADES-based ultrasonic-assisted and microwave-assisted extraction were investigated. Then, the time and liquid-to-solid ratios of ultrasonic- and microwave-combined extraction methods and the sequence of ultrasound and microwave treatments were examined. The conditions of ultrasonic-assisted extraction were 40 mL/g liquid-to-solid ratio, 40% water content, 30°C, 5 min, and 600 W ultrasonic power for the highest terpenoid recovery at 69 ± 2 mg UA/g dw, while 150 W ultrasonic power was suitable for phenolic recovery at 9.56 ± 0.17 mg GAE/g dw. The conditions of microwave-assisted extraction were 50 mL/g liquid-to-solid ratio, 20% water content, 400 W microwave power, and 2 min to acquire the highest phenolics and terpenoids at 22.13 ± 0.75 mg GAE/g dw and 90 ± 1 mg UA/g dw, respectively. Under appropriate conditions, the biological activities, phenolic content, and terpenoid content of obtained extracts from four extraction methods, including ultrasonic-assisted, microwave-assisted, ultrasonic-microwave-assisted, and microwave-ultrasonic-assisted extraction, were compared to select the most proper method. The conditions of ultrasonic-microwave-assisted extraction were 40 mL/g liquid-to-solid ratio, 5 min sonication, and 1 min microwave irradiation to obtain the highest phenolic and terpenoid contents (27.07 ± 0.27 mg GAE/g dw and 111 ± 3 mg UA/g dw, respectively). Ultrasonic-microwave-assisted extraction showed the highest phenolic content, terpenoid content, and biological activities among the four extraction techniques. The changes in the surface morphology were determined using scanning electron microscopy. This study demonstrated that ultrasonic-microwave-assisted extraction was an effective and sustainable method in food and pharmaceutical industries for recovering phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr.

14.
BMC Chem ; 17(1): 119, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735704

ABSTRACT

This study deployed ultrasonic-assisted extraction (UAE), combined with natural deep eutectic solvents (NADES), to extract phenolics and flavonoids from the black mulberry fruit, and the antioxidant activity was examined. The extraction yields of NADES-based UAE were assessed based on the yields of phenolics and flavonoids extracted from the black mulberry fruit. This study selected the molar ratios of hydrogen bond acceptors (HBA) and hydrogen bond donors HBD at 1:2 from previous studies. Choline chloride-lactic acid showed the highest solubility with phenolics and flavonoids among NADES systems. One-factor experiments evaluated the effect of UAE conditions (liquid-to-solid ratio (LSR), water content in NADES, temperature, and time) on TPC, TFC, and antioxidant activity. The suitable NADES-based UAE conditions for extracting phenolics and flavonoids from the black mulberry fruit were 60 ml/g of LSR, 40% water content, 70 °C, and 15 min. Response surface methodology with the Box-Behnken design model optimized the NADES-based UAE process based on response (TPC, TFC, ABTS, OH, and DPPH). The optimal conditions for the NADES-based UAE process were 70 ml/g of LSR, 38.9% water content in NADES, 67.9 °C, and 24.2 min of extraction time. The predicted values of the Box-Behnken design were compatible with the experimental results. Moreover, scanning electron microscopy (SEM) was used to survey the surface of black mulberry fruit with and without sonication. SEM can assist in demonstrating the destructive effect of NADES and ultrasonic waves on material surfaces. SEM findings indicated the high surface destruction capacity of NADES, which partially contributed to a superior extraction yield of NADES than conventional organic solvents. The study proposes an efficient and green method for extracting bioactive compounds from black mulberry fruits. The black mulberry fruit extracts can be applied to meat preservation and beverages with high antioxidants.

15.
Heliyon ; 9(7): e17663, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456030

ABSTRACT

This study aimed to produce bacterial cellulose from paper waste sludge (PWS) as a method of utilizing the cellulose source from the remaining pulp in the material. Initially, PWS was hydrolyzed by sulfuric acid to create an enriched-reducing sugar hydrolysate. One-factor experiments were conducted with a fixed amount of PWS (5 g) to investigate the influence of hydrolysis conditions, including water, sulfuric acid addition, temperature, and retention time, on the production yield of reducing sugars. Based on these results, the Box-Behnken model was designed to optimize the hydrolysis reaction. The optimal hydrolysis conditions were 10 ml/g of the sulfuric acid solution (30.9%) at 105.5 °C for 90 min of retention time 0.81 (gGE/g PWS), corresponding to a conversion yield of 40.5%). Subsequently, 100 ml of the filtered and neutralized PWS hydrolysate was used as the culture to produce the bacterial cellulose (BC) using Acetobacter xylinum, which produced 12 g/L of bacterial cellulose. The conversion yield of bacterial cellulose calculated as the ratio of the weight of produced bacterial cellulose to that of cellulose in PWS reached 33.3%. The structure of the obtained BC was analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) to indicate the formation of nano-cellulose fiber networks. This research proposed a combined method to convert paper waste sludge into bacterial cellulose, demonstrating the potential for waste utilization and sustainable production of paper industries for added-value products.

16.
Heliyon ; 9(4): e14884, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095977

ABSTRACT

This research combined ultrasonic-assisted extraction (UAE) and natural deep eutectic solvent (NADES) to recover phenolic and flavonoid components from mangosteen rind. The antioxidant activities were determined using DPPH, ABTS+, and hydroxyl assays. NADES prepared from lactic and 1,2-propanediol had the highest extraction efficiency based on the total flavonoid content (TFC) and phenolic contents (TPC). Single-factor experiments were employed to assess the influence of UAE conditions (liquid-to-solid ratio, temperature, water content in NADES, and time) on TFC, TPC, and antioxidant activities. NADES-based UAE conditions were optimized using response surface methodology with the Box-Behnken design model on five dependent responses (TPC, TFC, DPPH, ABTS, and OH). The optimal conditions for the lactic-1,2-Propanediol-based UAE process were 76.7 ml liquid/g solid with 30.3% of water content at 57.5 °C for 9.1 min. Scanning electron microscopy (SEM) was applied to examine the surface morphology of mangosteen rind before and after sonication. This study proposes an efficient, green, and practical approach for recovering phenolics and flavonoids from mangosteen rinds.

17.
ACS Omega ; 8(42): 39523-39534, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901568

ABSTRACT

This study aimed to use oleic acid-based ultrasonic-assisted extraction (UAE) to recover carotenoids from carrot pomace and emulsify the enriched-carotenoid oleic acid using spontaneous and ultrasonic-assisted emulsification. The extraction performance of oleic acid was compared with traditional organic solvents, including hexane, acetone, and ethyl acetate. The one-factor experiments were employed to examine the impact of UAE conditions, including liquid-to-solid ratios, temperature, ultrasonic power, and time, on the extraction yield of carotenoids and to find the conditional ranges for the optimization process. The response surface methodology was employed to optimize the UAE process. The second-order extraction kinetic model was used to find the mechanism of oleic acid-based UAE. After that, the enriched-carotenoid oleic acid obtained at the optimal conditions of UAE was used to fabricate nanoemulsions using spontaneous emulsification (SE), ultrasonic-assisted emulsification (UE), and SE-UE. The effect of SE and UE conditions on the turbidity of nanoemulsion was determined. Then, the physiochemical attributes of the nanoemulsion from SE, UE, and spontaneous ultrasonic-assisted emulsification (SE-UE) were determined using the dynamic light scattering method. The extraction yield of carotenoids from carrot pomace by using sonication was the highest. The adjusted optimal conditions were 39 mL/g of LSR, 50 °C, 12.5 min, and 350 W of ultrasonic power. Under optimal conditions, the carotenoid content attained was approximately 163.43 ± 1.83 µg/g, with the anticipated value (166 µg/g). The particle sizes of nanoemulsion fabricated at the proper conditions of SE, UE, and SE-UE were 31.2 ± 0.83, 33.8 ± 0.52, and 109.7 ± 8.24 nm, respectively. The results showed that SE and UE are suitable methods for fabricating nanoemulsions. The research provided a green approach for extracting and emulsifying carotenoids from carrot pomace.

18.
Foods ; 11(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36076899

ABSTRACT

Deoiled coconut cake powder (DCCP) was hydrolyzed to reduce the ratio of insoluble/soluble dietary fiber (RIS) by partially converting insoluble dietary fiber to soluble using Celluclast 1.5 L, a commercial cellulase preparation in citrate buffer medium. Firstly, the influence of citrate buffer amount, enzyme concentration, pH, and retention time on the enzymatic hydrolysis efficiency was investigated. Then, response surface methodology (RSM) was employed to optimize the process in which the insoluble and soluble dietary fiber contents were the responses. The results revealed that 10.3 g buffer/g of materials, 3.7 U/g of the materials, and 60 min of retention time were the optimal conditions for the enzymatic hydrolysis to obtain the insoluble and soluble contents of 68.21%db and 8.18%db, respectively. Finally, DCCP or hydrolyzed DCCP (HDCCP) was partially substituted for wheat flour at different replacement ratios in a cookie recipe at 0, 10, 20, 30, and 40%. The cookies with a 10% replacement ratio of hydrolyzed deoiled coconut cake powders had a lower RIS by more than two folds those of DCCP and had the same sensorial score as the control sample. This study proposed that Celluclast 1.5 L effectively reduced RIS by partially converting insoluble to soluble dietary fiber, improving the soluble dietary fiber content in fiber-enriched cookies.

19.
Colloids Surf B Biointerfaces ; 218: 112722, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35917691

ABSTRACT

Injectability and self-setting properties are important factors to increase the efficiency of bone regeneration and reconstruction, thereby reducing the invasiveness of hard tissue engineering procedures. In this study, 63S bioactive glass (BG), nano-hydroxyapatite (n-HAp), alumina, titanium dioxide, and methylene bis-acrylamide (MBAM)-mediated polymeric crosslinking composites were prepared for the formulation of an efficient self-setting bone cement. According to the cytocompatibility and physicochemical analyses, all the samples qualified the standard of the bio-composite materials. They revealed high thermal stability, injectability, and self-setting ability supported by ~ 10.73% (maximum) mass loss, ~ 92-93% injectability and 24 ± 5 min of initial setting time. Moreover, a cellular adhesion and proliferation study was additionally performed with osteoblasts like MG-63 cells, which facilitate pseudopod-like cellular extensions on the BG/n-HAp composite scaffold surface. The SAM study was employed to non-invasively assess the self-setting properties of the composite bio-cement using the post injected distribution and physical properties of the phantom. These results validate the significant potential characteristics of the BG/n-HAp self-setting bio-cement (16:4:2:1) for promising minimal-invasive bone tissue engineering applications.


Subject(s)
Bone Cements , Tissue Engineering , Acoustics , Acrylamides , Aluminum Oxide , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Cements/chemistry , Dental Materials , Durapatite/chemistry , Materials Testing/methods , Tissue Engineering/methods
20.
Curr Res Food Sci ; 5: 2013-2021, 2022.
Article in English | MEDLINE | ID: mdl-36337913

ABSTRACT

This context presents the study of ultrasonic-assisted extraction (UAE) to obtain phenolic and flavonoid compounds from watermelon rind powder (WRP). The antioxidant activity of the extracts was investigated using DPPH and ABTS+ assays. One-factor experiments were conducted to examine the effect of each factor (solid-to-liquid ratio (SLR), acetone concentration (AC), temperature, and time) on the UAE of WRP. Box-Behnken Design (BDD) model was employed to optimize the UAE conditions based on total phenolic contents (TPC), total flavonoid content (TFC), and their antioxidant activities. The optimal conditions were 1:30.50 SLR, 70.71% AC, 29.78 °C, and 10.65 min extraction time. There were no significant differences between predicted and experimental results (less than 6.0%), recommending a feasible and innovative process of deploying UAE to extract phenolics and flavonoids effectively from watermelon rind.

SELECTION OF CITATIONS
SEARCH DETAIL