Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38843440

ABSTRACT

Pulmonary fibrosis can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analysed using transmission electron microscopy, immunohistochemistry and single-cell-RNA-sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in-vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells in fibrotic lungs as compared to donors. A more intense CD31 and vWF and patchy VE-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin and VEGFR-2 and activation marker von-Willebrand-Factor gene expression was increased in different endothelial subpopulations (e.g. arterial, venous, gCap, aCap) in pulmonary fibrosis. This was associated with a heightened sensitivity of fibrotic endothelial cells to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in endothelial cells from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, while VE-Cadherin, Thrombomodulin and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of PF patients six months after the initial diagnosis. Our data demonstrate highly abnormal endothelial cells in PF. The vascular compartment is characterized by hyper-activation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Re-establishing endothelial cell homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.

2.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L431-L437, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35997290

ABSTRACT

For more than 2 years, COVID-19 has been holding the world at awe with new waves of infections, novel mutants, and still limited (albeit improved) means to combat SARS-CoV-2-induced respiratory failure, the most common and fatal presentation of severe COVID-19. In the present perspective, we draw from the successes and-mostly-failures in previous acute respiratory distress syndrome (ARDS) work and the experiences from COVID-19 to define conceptual barriers that have so far hindered therapeutic breakthroughs in this deadly disease, and to open up new avenues of thinking and thus, ultimately of therapy.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2
3.
Circ Res ; 125(3): 356-366, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31242807

ABSTRACT

RATIONALE: CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE: We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS: We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS: We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Basic Helix-Loop-Helix Transcription Factors/physiology , Cytochrome P-450 Enzyme System/physiology , Hypertension, Pulmonary/metabolism , Receptors, Aryl Hydrocarbon/physiology , Animals , Environmental Pollutants/toxicity , Enzyme Activation , Estrogens/metabolism , Female , Genetic Predisposition to Disease , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypoxia/complications , Inflammation , Male , Mice , Polymorphism, Genetic , Sex Factors , Vasoconstriction
4.
Circulation ; 140(17): 1409-1425, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31462075

ABSTRACT

BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Inflammation/metabolism , Neointima/metabolism , Pulmonary Arterial Hypertension/physiopathology , Animals , Endothelial Cells/metabolism , Hypertension, Pulmonary/physiopathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Rats, Transgenic , Signal Transduction/physiology
5.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1115-L1130, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32023082

ABSTRACT

Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.


Subject(s)
Lung Neoplasms/pathology , Models, Biological , Pulmonary Arterial Hypertension/pathology , Animals , Apoptosis , Autoimmunity , Humans , Neoplasm Proteins/metabolism
6.
Eur Respir J ; 56(1)2020 07.
Article in English | MEDLINE | ID: mdl-32241831

ABSTRACT

BACKGROUND: In animal models of pulmonary arterial hypertension (PAH), angiotensin-converting enzyme (ACE)2 and angiotensin (Ang)-(1-7) have been shown to have vasodilatory, antiproliferative, antifibrotic and antihypertrophic properties. However, the status and role of the ACE2-Ang(1-7) axis in human PAH is incompletely understood. METHODS: We studied 85 patients with a diagnosis of PAH of distinct aetiologies. 55 healthy blood donors paired for age and sex served as controls. Blood samples were obtained from the pulmonary artery in patients with PAH during right heart catheterisation. Peripheral blood was obtained for both groups. Ang(1-7) and -II were measured using zone capillary electrophoresis. Aldosterone, Ang(1-9), AngA and ACE2 were measured using ELISA, and ACE2 activity was determined enzymatically. RESULTS: Of the 85 patients, 47 had idiopathic PAH, 25 had PAH associated with congenital heart disease and 13 had PAH associated with collagen vascular disease. Compared to controls, patients with PAH had a higher concentration of AngII (median 1.03, interquartile range 0.72-1.88 pmol·mL-1 versus 0.19, 0.10-0.37 pmol·mL-1; p<0.001) and of aldosterone (88.7, 58.7-132 ng·dL-1 versus 12.9, 9.55-19.9 ng·dL-1; p<0.001). Conversely, PAH patients had a lower concentration of Ang(1-7) than controls (0.69, 0.474-0.91 pmol·mL-1 versus 4.07, 2.82-6.73 pmol·mL-1; p<0.001), and a lower concentration of Ang(1-9) and AngA. Similarly, the ACE2 concentration was higher than in controls (8.7, 5.35-13.2 ng·mL-1 versus 4.53, 1.47-14.3 ng·mL-1; p=0.011), whereas the ACE2 activity was significantly reduced (1.88, 1.08-2.81 nmol·mL-1 versus 5.97, 3.1-17.8 nmol·mL-1; p<0.001). No significant differences were found among the three different aetiological forms of PAH. CONCLUSIONS: The AngII-ACE2-Ang(1-7) axis appears to be altered in human PAH and we propose that this imbalance, in favour of AngII, plays a role in the pathogenesis of the severe PAH. Further mechanistic studies are warranted.


Subject(s)
Angiotensin-Converting Enzyme 2 , Pulmonary Arterial Hypertension , Angiotensin I , Animals , Humans , Peptide Fragments , Peptidyl-Dipeptidase A
7.
Circ Res ; 122(12): 1689-1702, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29545367

ABSTRACT

RATIONALE: Pulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females. OBJECTIVE: To evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH. METHODS AND RESULTS: Male and female athymic rnu/rnu rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration. Plasma PGI2 (prostacyclin) levels were measured. Lung and right ventricles were assessed for the expression of the vasoprotective proteins COX-2 (cyclooxygenase 2), PTGIS (prostacyclin synthase), PDL-1 (programmed death ligand 1), and HO-1 (heme oxygenase 1). Inhibitors of these pathways were administered to athymic rats undergoing Treg immune reconstitution. Finally, human cardiac microvascular endothelial cells cocultured with Tregs were evaluated for COX-2, PDL-1, HO-1, and ER (estrogen receptor) expression, and culture supernatants were assayed for PGI2 and IL (interleukin)-10. SU5416-treatment and chronic hypoxia produced more severe PH in female than male athymic rats. Females were distinguished by greater pulmonary inflammation, augmented right ventricular fibrosis, lower plasma PGI2 levels, decreased lung COX-2, PTGIS, HO-1, and PDL-1 expression and reduced right ventricular PDL-1 levels. In both sexes, Treg immune reconstitution protected against PH development and raised levels of plasma PGI2 and cardiopulmonary COX-2, PTGIS, PDL-1, and HO-1. Inhibiting COX-2, HO-1, and PD-1 (programmed death 1)/PDL-1 pathways abrogated Treg protection. In vitro, human Tregs directly upregulated endothelial COX-2, PDL-1, HO-1, ERs and increased supernatant levels of PGI2 and IL-10. CONCLUSIONS: In 2 animal models of PH based on Treg deficiency, females developed more severe PH than males. The data suggest that females are especially reliant on the normal Treg function to counteract the effects of pulmonary vascular injury leading to PH.


Subject(s)
Hypertension, Pulmonary/prevention & control , Sex Factors , T-Lymphocytes, Regulatory/physiology , Angiogenesis Inhibitors/pharmacology , Animals , B7-H1 Antigen/analysis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Chronic Disease , Cyclooxygenase 2/analysis , Cyclooxygenase 2/metabolism , Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/metabolism , Epoprostenol/antagonists & inhibitors , Epoprostenol/blood , Epoprostenol/metabolism , Female , Heme Oxygenase (Decyclizing)/analysis , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase (Decyclizing)/metabolism , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/etiology , Hypoxia/complications , Indoles/pharmacology , Intramolecular Oxidoreductases/analysis , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Lung/metabolism , Male , Prostaglandins I/biosynthesis , Pyrroles/pharmacology , Rats , Rats, Nude , Receptors, Estrogen/analysis , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , T-Lymphocytes, Regulatory/immunology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
8.
Am J Respir Crit Care Med ; 198(4): e15-e43, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30109950

ABSTRACT

BACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.


Subject(s)
Research , Ventricular Dysfunction, Right/diagnosis , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right/physiology , Animals , Humans , Societies, Medical , United States
9.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L967-L983, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29417823

ABSTRACT

Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.


Subject(s)
Endothelin Receptor Antagonists/adverse effects , Hypertension, Pulmonary , Phosphodiesterase 5 Inhibitors/adverse effects , Pulmonary Circulation/drug effects , Animals , Endothelin Receptor Antagonists/therapeutic use , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Phosphodiesterase 5 Inhibitors/therapeutic use
10.
BMC Pulm Med ; 18(1): 197, 2018 Dec 29.
Article in English | MEDLINE | ID: mdl-30594174

ABSTRACT

BACKGROUND: Impaired angiogenesis is assumed to be an important factor in the development of chronic thromboembolic pulmonary hypertension (CTEPH). However, the role of endothelial cells (ECs) in CTEPH remains unclear. The aim of this study was to investigate the angiogenic potential of ECs from pulmonary endarterectomy (PEA) specimens. METHODS: We isolated ECs from PEA specimens (CTEPH-ECs) and control EC lines from the intact pulmonary arteries of patients with peripheral lung cancers, using a MACS system. These cells were analyzed in vitro including PCR-array analysis, and the PEA specimens were analyzed with immunohistochemistry. Additionally, the serum HGF levels were determined in CTEPH patients. RESULTS: A three-dimensional culture assay revealed that CTEPH-ECs were highly angiogenic. An angiogenesis-focused gene PCR array revealed a high expression of hepatocyte growth factor (HGF) in CTEPH-ECs. The high expression of HGF was also confirmed in the supernatant extracted from PEA specimens. The immunohistochemical analysis showed expression of HGF on the surface of the thrombus vessels. The serum HGF levels in CTEPH patients were higher than those in pulmonary thromboembolism survivors. CONCLUSION: Our study suggests that there are ECs with pro-angiogenetic character and high expression of HGF in PEA specimens. It remains unknown how these results are attributable to the etiology. However, further investigation focused on the HGF pathway may provide novel diagnostic and therapeutic tools for patients with CTEPH.


Subject(s)
Endothelial Cells/physiology , Hepatocyte Growth Factor/metabolism , Hypertension, Pulmonary/physiopathology , Lung Neoplasms/pathology , Neovascularization, Pathologic , Pulmonary Artery/physiopathology , Pulmonary Embolism/physiopathology , Aged , Aged, 80 and over , Case-Control Studies , Cells, Cultured , Chronic Disease , Endarterectomy , Endothelial Cells/metabolism , Female , Gene Expression , Hepatocyte Growth Factor/antagonists & inhibitors , Hepatocyte Growth Factor/blood , Hepatocyte Growth Factor/genetics , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/surgery , Male , Middle Aged , Neovascularization, Pathologic/genetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/surgery , Pulmonary Embolism/blood , Pulmonary Embolism/complications , Pyrrolidinones/pharmacology , Quinolines/pharmacology
11.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L560-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27422996

ABSTRACT

Here, we tested the hypothesis that animals with severe pulmonary arterial hypertension (PAH) display increased sensitivity to vascular permeability induced by activation of store-operated calcium entry. To test this hypothesis, wild-type and transient receptor potential channel 4 (TRPC4) knockout Fischer 344 rats were given a single injection of Semaxanib (SU5416; 20 mg/kg) followed by 3 wk of exposure to hypoxia (10% oxygen) and a return to normoxia (21% oxygen) for an additional 2-3 wk. This Semaxanib/hypoxia/normoxia (i.e., SU5416/hypoxia/normoxia) treatment caused PAH, as evidenced by development of right ventricular hypertrophy, pulmonary artery medial hypertrophy, and occlusive lesions within precapillary arterioles. Pulmonary artery pressure was increased fivefold in Semaxanib/hypoxia/normoxia-treated animals compared with untreated, Semaxanib-treated, and hypoxia-treated controls, determined by isolated perfused lung studies. Thapsigargin induced a dose-dependent increase in permeability that was dependent on TRPC4 in the normotensive perfused lung. This increase in permeability was accentuated in PAH lungs but not in Semaxanib- or hypoxia-treated lungs. Fluid accumulated in large perivascular cuffs, and although alveolar fluid accumulation was not seen in histological sections, Evans blue dye conjugated to albumin was present in bronchoalveolar lavage fluid of hypertensive but not normotensive lungs. Thus PAH is accompanied by a TRPC4-dependent increase in the sensitivity to edemagenic agents that activate store-operated calcium entry.


Subject(s)
Calcium Signaling , Endothelium, Vascular/metabolism , Hypertension, Pulmonary/metabolism , Animals , Arterial Pressure/drug effects , Cell Hypoxia , Endothelium, Vascular/pathology , Hypertension, Pulmonary/pathology , Indoles/pharmacology , Male , Permeability/drug effects , Pyrroles/pharmacology , Rats, Inbred F344 , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Thapsigargin/pharmacology
12.
Heart Fail Rev ; 21(3): 259-71, 2016 05.
Article in English | MEDLINE | ID: mdl-26833318

ABSTRACT

In patients with pulmonary hypertension (PH), the primary cause of death is right ventricular (RV) failure. Improvement in RV function is therefore one of the most important treatment goals. In order to be able to reverse RV dysfunction and also prevent RV failure, a detailed understanding of the pathobiology of RV failure and the underlying mechanisms concerning the transition from a pressure-overloaded adapted right ventricle to a dilated and failing right ventricle is required. Here, we propose that insufficient RV contractility, myocardial fibrosis, capillary rarefaction, and a disturbed metabolism are important features of a failing right ventricle. Furthermore, an overview is provided about the potential direct RV effects of PH-targeted therapies and the effects of RV-directed medical treatments.


Subject(s)
Heart Failure/etiology , Heart Failure/physiopathology , Hypertension, Pulmonary/complications , Ventricular Dysfunction, Right/complications , Animals , Fibrosis , Humans , Microvascular Rarefaction/physiopathology , Myocardial Contraction , Rats , Sex Characteristics , Ventricular Function, Right , Ventricular Remodeling
13.
Respir Res ; 17(1): 139, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27784320

ABSTRACT

BACKGROUND: Cigarette smoke induced oxidative stress has been shown to reduce silent information regulator 1 (Sirt1) levels in lung tissue from smokers and patients with COPD patients. Sirt1 is known to inhibit endothelial senescence and may play a protective role in vascular cells. Endothelial progenitor cells (EPCs) are mobilized into circulation under various pathophysiological conditions, and are thought to play an important role in tissue repair in chronic obstructive lung disease (COPD). Therefore, Sirt1 and EPC-associated mRNAs were measured in blood samples from patients with COPD and from cultured CD34+ progenitor cells to examine whether these genes are associated with COPD development. METHODS: This study included 358 patients with a smoking history of more than 10 pack-years. RNA was extracted from blood samples and from CD34+ progenitor cells treated with cigarette smoke extract (CSE), followed by assessment of CD31, CD34, Sirt1 mRNA, miR-34a, and miR-126-3p expression by real-time RT-PCR. RESULTS: The expression of CD31, CD34, Sirt1 mRNAs, and miR-126-3p decreased and that of miR-34a increased in moderate COPD compared with that in control smokers. However, no significant differences in these genes were observed in blood cells from patients with severe COPD compared with those in control smokers. CSE significantly decreased Sirt1 and increased miR-34a expression in cultured progenitor cells. CONCLUSION: Sirt1 expression in blood cells from patients with COPD could be a biomarker for disease stability in patients with moderate COPD. MiR-34a may participate in apoptosis and/or senescence of EPCs in smokers. Decreased expression of CD31, CD34, and miR-126-3p potentially represents decreased numbers of EPCs in blood cell from patients with COPD.


Subject(s)
Platelet Endothelial Cell Adhesion Molecule-1/blood , Pulmonary Disease, Chronic Obstructive/blood , Sirtuin 1/blood , Aged , Aged, 80 and over , Apoptosis , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Cells, Cultured , Cellular Senescence , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Female , Gene Expression Regulation , Genetic Markers , Humans , Male , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Prognosis , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , RNA, Messenger/blood , RNA, Messenger/genetics , Sirtuin 1/genetics , Smoking/adverse effects , Smoking/blood , Smoking/genetics
14.
J Immunol ; 192(2): 589-602, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24337385

ABSTRACT

IL-32 is a multifaceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and we now reveal that IL-32 also possesses angiogenic properties. The hyperproliferative ECs of human pulmonary arterial hypertension and glioblastoma multiforme exhibited a markedly increased abundance of IL-32, and, significantly, the cytokine colocalized with integrin αVß3. Vascular endothelial growth factor (VEGF) receptor blockade, which resulted in EC hyperproliferation, increased IL-32 three-fold. Small interfering RNA-mediated silencing of IL-32 negated the 58% proliferation of ECs that occurred within 24 h in scrambled-transfected controls. Reduction of IL-32 neither affected apoptosis (insignificant changes in Bak-1, Bcl-2, Bcl-xL, lactate dehydrogenase, annexin V, and propidium iodide) nor VEGF or TGF-ß levels, but siIL-32-transfected adult and neonatal ECs produced up to 61% less NO, IL-8, and matrix metalloproteinase-9, and up to 3-fold more activin A and endostatin. In coculture-based angiogenesis assays, IL-32γ dose-dependently increased tube formation up to 3-fold; an αVß3 inhibitor prevented this activity and reduced IL-32γ-induced IL-8 by 85%. In matrigel plugs loaded with IL-32γ, VEGF, or vehicle and injected into live mice, we observed the anticipated VEGF-induced increase in neocapillarization (8-fold versus vehicle), but unexpectedly, IL-32γ was equally angiogenic. A second signal such as IFN-γ was required to render cells responsive to exogenous IL-32γ; importantly, this was confirmed using a completely synthetic preparation of IL-32γ. In summary, we add angiogenic properties that are mediated by integrin αVß3 but VEGF-independent to the portfolio of IL-32, implicating a role for this versatile cytokine in pulmonary arterial hypertension and neoplastic diseases.


Subject(s)
Interleukins/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Activins/metabolism , Animals , Apoptosis/physiology , Cells, Cultured , Endostatins/metabolism , Familial Primary Pulmonary Hypertension , Glioblastoma/embryology , Glioblastoma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Integrin alphaVbeta3/metabolism , Interferon-gamma/metabolism , Interleukin-8/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Nitrogen Oxides/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism
15.
Eur J Pediatr ; 175(4): 445-55, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26895877

ABSTRACT

UNLABELLED: Major advances in chronic heart failure (cHF) therapy have been achieved and documented in adult patients, while research regarding the mechanisms and therapy of cHF in children has lagged behind. Based on receptor physiological studies and pharmacological knowledge, treatment with specific ß1-adrenergic receptor blocker (ARB), tissue angiotensin-converting enzyme inhibitor (ACE-I), and mineralocorticoid antagonists have to be recommended in children despite lack of sufficient data derived from prospective randomized studies. At our institution, bisoprolol, lisinopril, and spironolactone have been firmly established to treat systolic cHF, hypoplastic left heart syndrome (HLHS) following hybrid approach and congenital left-right shunt diseases, latest in patients where surgery has to be delayed. Chronic therapy with long-acting diuretics and fluid restriction are not advocated because short-term effects are achieved at the expense of further neuro-humoral stimulation. It remains unclear why diuretics are recommended although evidence-based studies, documenting long-term benefit, are missing. However, that is true for all currently used drugs for pediatric cHF. CONCLUSION: This review focuses on the prevailing "nihilism" of cHF therapy in children with the goal to encourage physicians to treat pediatric cHF with a rationally designed therapy, which combines available agents that have been shown to improve survival in adult patients with cHF. Because of the lack of clinical trials, which generate the needed evidence, surrogate variables like heart and respiratory rate, weight gain, image-derived data, and biomarkers should be monitored and used instead. The recommended pharmacological therapy for systolic heart failure is also provided as the basis for utilizing reversible pulmonary arterial banding (PAB) as a novel strategy in young children with dilative cardiomyopathy (DCM) with preserved right ventricular function. WHAT IS KNOWN: • Heart failure (HF) in children is a serious public health concern. • HF has numerous etiologies, but unspecific symptoms. • HF interplays among neuro-humoral, and molecular abnormalities. • Pediatric cHF-therapy is currently based on loop-diuretics, fluid restriction and digoxin. What is New: • Cardiac function analysis has to include cardiac synchrony and VVI. • Considering enormous potential of cardiac regeneration, therapy has to extend with selective ß1-ARB, tissue ACE-I and mineralocorticoid blockers, loop-diuretics avoided as ever possible. • Inhibition of the endogenous neuro-humoral stimulation is monitored by surrogate parameters as heart and breath rate and systolic and diastolic blood pressure. • Advocated HF therapy serves for regenerative strategies as reversible Pulmonary Artery Banding in DCM.


Subject(s)
Heart Failure/drug therapy , Practice Patterns, Physicians' , Adrenergic beta-Antagonists/therapeutic use , Adult , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Anti-Arrhythmia Agents/therapeutic use , Cardiotonic Agents/therapeutic use , Child , Child, Preschool , Disease Management , Diuretics/therapeutic use , Humans , Infant
16.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1164-73, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26386116

ABSTRACT

Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is required for the development of experimental pulmonary hypertension in rodents exposed to hypoxia or monocrotaline. While these animal models resemble human PAH only with respect to vascular media remodeling, we hypothesized that SERT is likewise required for the presence of lumen-obliterating intima remodeling, a hallmark of human PAH reproduced in the Sugen hypoxia (SuHx) rat model of severe angioproliferative pulmonary hypertension. Therefore, SERT wild-type (WT) and knockout (KO) rats were exposed to the SuHx protocol. SERT KO rats, while completely lacking SERT, were hemodynamically indistinguishable from WT rats. After exposure to SuHx, similar degrees of severe angioproliferative pulmonary hypertension and right ventricular hypertrophy developed in WT and KO rats (right ventricular systolic pressure 60 vs. 55 mmHg, intima thickness 38 vs. 30%, respectively). In conclusion, despite its implicated importance in PAH, SERT does not play an essential role in the pathogenesis of severe angioobliterative pulmonary hypertension in rats exposed to SuHx.


Subject(s)
Hypertension, Pulmonary/metabolism , Serotonin Plasma Membrane Transport Proteins/physiology , Animals , Cell Hypoxia , Gene Knockout Techniques , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Lung/blood supply , Lung/metabolism , Lung/pathology , Male , Proliferating Cell Nuclear Antigen/metabolism , Rats , Vascular Remodeling
17.
Eur Respir J ; 45(2): 449-62, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25261325

ABSTRACT

Prostacyclin and its analogues improve cardiac output and functional capacity in patients with pulmonary arterial hypertension (PAH); however, the underlying mechanism is not fully understood. We hypothesised that prostanoids have load-independent beneficial effects on the right ventricle (RV). Angio-obliterative PAH and RV failure were induced in rats with a single injection of SU5416 followed by 4 weeks of exposure to hypoxia. Upon confirmation of RV dysfunction and PAH, rats were randomised to 0.1 µg·kg(-1) nebulised iloprost or drug-free vehicle, three times daily for 2 weeks. RV function and treadmill running time were evaluated pre- and post-iloprost/vehicle treatment. Pulmonary artery banded rats were treated 8 weeks after surgery to allow for significant RV hypertrophy. Inhaled iloprost significantly improved tricuspid annulus plane systolic excursion and increased exercise capacity, while mean pulmonary artery pressure and the percentage of occluded pulmonary vessels remained unchanged. Rats treated with iloprost had a striking reduction in RV collagen deposition, procollagen mRNA levels and connective tissue growth factor expression in both SU5416/hypoxia and pulmonary artery banded rats. In vitro, cardiac fibroblasts treated with iloprost showed a reduction in transforming growth factor (TGF)-ß1-induced connective tissue growth factor expression, in a protein kinase A-dependent manner. Iloprost decreased TGF-ß1-induced procollagen mRNA expression as well as cardiac fibroblast activation and migration. Iloprost significantly induced metalloproteinase-9 gene expression and activity and increased the expression of autophagy genes associated with collagen degradation. Inhaled iloprost improves RV function and reverses established RV fibrosis partially by preventing collagen synthesis and by increasing collagen turnover.


Subject(s)
Hypertrophy, Right Ventricular/drug therapy , Iloprost/therapeutic use , Animals , Collagen/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Echocardiography , Fibroblasts/cytology , Fibrosis , Heart Ventricles/drug effects , Heart Ventricles/pathology , Hemodynamics , Hypertension, Pulmonary/chemically induced , Hypoxia/physiopathology , Indoles , Male , Matrix Metalloproteinase 9/metabolism , Microscopy, Phase-Contrast , Physical Conditioning, Animal , Procollagen/metabolism , Pyrroles , RNA, Messenger/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , Vasodilator Agents/therapeutic use , Ventricular Function, Right
18.
Microvasc Res ; 98: 126-38, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25665868

ABSTRACT

While significant progress has been made to advance our knowledge of microvascular lesion formation, yet the investigation of how stem-like cells may contribute to the pathogenesis of microvascular diseases is still in its infancy. We assessed whether the inhibitor of DNA binding and differentiation 3 (ID3) contributes to the acquisition of a molecular stem cell-like signature in microvascular endothelial cells. The effects of stable ID3 overexpression and SU5416 treatment - a chemical inducer of microvascular lesions, had on the stemness signature were determined by flow cytometry, immunoblot, and immunohistochemistry. Continuous ID3 expression produced a molecular stemness signature consisting of CD133(+) VEGFR3(+) CD34(+) cells. Cells exposed to SU5416 showed positive protein expression of ID3, VEGFR3, CD34 and increased expression of pluripotent transcription factors Oct-4 and Sox-2. ID3 overexpressing cells supported the formation of a 3-D microvascular lesion co-cultured with smooth muscle cells. In addition, in vivo microvascular lesions from SuHx rodent model showed an increased expression of ID3, VEGFR3, and Pyk2 similar to SU5416 treated human endothelial cells. Further investigations into how normal and stem-like cells utilize ID3 may open up new avenues for a better understanding of the molecular mechanisms which are underlying the pathological development of microvascular diseases.


Subject(s)
Endothelial Cells/cytology , Inhibitor of Differentiation Proteins/metabolism , Microcirculation , Neoplasm Proteins/metabolism , Stem Cells/cytology , AC133 Antigen , Animals , Antigens, CD/metabolism , Antigens, CD34/metabolism , Cell Cycle , Cell Differentiation , Cell Separation , Flow Cytometry , Glycoproteins/metabolism , Humans , Indoles/chemistry , Inhibitor of Differentiation Proteins/genetics , Neoplasm Proteins/genetics , Peptides/metabolism , Phenotype , Pyrroles/chemistry , Rats , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
19.
Respir Res ; 16: 84, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26150101

ABSTRACT

Given the difficulty of diagnosing early-stage pulmonary arterial hypertension (PAH) due to the lack of signs and symptoms, and the risk of an open lung biopsy, the precise pathological features of presymptomatic stage lung tissue remain unknown. It has been suggested that the maximum elevation of the mean pulmonary arterial pressure (P pa) is achieved during the early symptomatic stage, indicating that the elevation of the mean P pa is primarily driven by the pulmonary vascular tone and/or some degree of pulmonary vascular remodeling completed during this stage. Recently, the examination of a rat model of severe PAH suggested that the severe PAH may be primarily determined by the presence of intimal lesions and/or the vascular tone in the early stage. Human data seem to indicate that intimal lesions are essential for the severely increased pulmonary arterial blood pressure in the late stage of the disease.However, many questions remain. For instance, how does the pulmonary hemodynamics change during the course of the disease, and what drives the development of severe PAH? Although it is generally acknowledged that both pulmonary vascular remodeling and the vascular tone are important determinants of an elevated pulmonary arterial pressure, which is the root cause of the time-dependent progression of the disease? Here we review the recent histopathological concepts of PAH with respect to the progression of the lung vascular disease.


Subject(s)
Arterial Pressure/physiology , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/physiopathology , Pulmonary Artery/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL