Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Proc Natl Acad Sci U S A ; 120(2): e2212456120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595705

ABSTRACT

Antifreeze proteins (AFPs) bind ice to reduce freezing temperatures and arrest ice crystal ripening, making AFPs essential for the survival of many organisms in ice-laden environments and attractive as biocompatible antifreezes in many applications. While their activity was identified over 50 years ago, the physical mechanisms through which they function are still debated because experimental insights at the molecular scale remain elusive. Here, we introduce subzero nanoscopy by the design and incorporation of a freezing stage on a commercial super-resolution setup to resolve the interfacial dynamics of single AFPs with ice crystal surfaces. Using this method, we demonstrate irreversible binding and immobilization (i.e., pinning) of individual proteins to the ice/water interface. Surprisingly, pinning is lost and adsorption becomes reversible when freezing point depression activity, but not ice recrystallization inhibition, is eliminated by a single mutation in the ice-binding site of the AFP. Our results provide direct experimental evidence for the adsorption-inhibition paradigm, pivotal to all theoretical descriptions of freezing point depression activity, but also reveal that reversible binding to ice must be accounted for in an all-inclusive model for AFP activity. These mechanistic insights into the relation between interfacial interactions and activity further our understanding and may serve as leading principles in the future design of highly potent, biocompatible antifreezes with tunable affinity.


Subject(s)
Antifreeze Proteins , alpha-Fetoproteins , Crystallization , Antifreeze Proteins/chemistry , Freezing , Cryoprotective Agents
2.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729203

ABSTRACT

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Subject(s)
Diatoms , Vibrio cholerae , Animals , Humans , Infant , Mice , Bacteria , Cell Aggregation , Gastrointestinal Tract , Intestines , Vibrio cholerae/genetics
3.
Proc Natl Acad Sci U S A ; 120(27): e2220380120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364125

ABSTRACT

Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure-activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure-activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.


Subject(s)
Flounder , Ice , Animals , Antifreeze Proteins/chemistry , Caspase 1
4.
J Am Chem Soc ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995949

ABSTRACT

We demonstrate the construction of pH-responsive bicontinuous nanospheres (BCNs) with nonlinear transient permeability and catalytic activity. The BCNs were assembled from amphiphilic block copolymers comprising pH-responsive groups and were loaded with the enzymes urease and horseradish peroxidase (HRP). A transient membrane permeability switch was introduced by employing the well-known pH-increasing effect of urease upon conversion of urea to ammonia. As expected, the coencapsulated HRP displayed a transiently regulated catalytic output profile upon addition of urea, with no significant product formation after the pH increase. This transient process displayed a nonlinear "dampening" behavior, induced by a decrease in membrane permeability as a result of significant local ammonia production. Furthermore, the catalytic output of HRP could be modulated by addition of different amounts of urea or by altering the buffer capacity of the system. Finally, this nonlinear dampening effect was not observed in spherical polymersomes, even though the membrane permeability could also be inhibited by addition of urea. The specific BCN morphology therefore allows to optimally control catalytic processes by pH changes in the nanoreactor microenvironment compared to bulk conditions due to its unique permeability profile.

5.
EMBO Rep ; 22(3): e52162, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33586846

ABSTRACT

Understanding the mechanisms by which natural anti-freeze proteins protect cells and tissues from cold could help to improve the availability of donor organs for transplantation.


Subject(s)
Antifreeze Proteins
6.
Biomacromolecules ; 23(2): 520-529, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35045706

ABSTRACT

While most native ice-binding proteins are rigid, artificial (macro)molecular ice-binders are usually flexible. Realizing a regular array with precisely positioned ice-binding motifs on synthetic proteins, (macro)molecular ice-binders are thus challenging. Here, we exploit the predictable assembly of cyclic peptides into nanotubes as a starting point to prepare large, rigid ice-binders bearing an ice-binding site that is found in hyperactive ice-binding proteins in insects. First, we designed, synthesized, and purified cyclic octapeptide Lys2CP8 bearing a TaT motif to promote ice binding and investigated their solution assembly and activity using circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, light scattering (LS), cryogenic transmission electron microscopy (cryo-TEM), and ice recrystallization inhibition (IRI) assays. The cyclic peptide Lys2CP8 was synthesized in good yield using Fmoc chemistry and purified by reversed-phase HPLC. Upon dissolution in aqueous solutions, Lys2CP8 was observed to assemble in a pH- and concentration-dependent manner into objects with nanoscopic dimensions. LS revealed the presence of small and large aggregates at pH 3 and 11, held together through a network of intermolecular antiparallel ß-sheets as determined by FTIR and CD spectroscopy. Cryo-TEM revealed the presence of one-dimensional objects at pH 3 and 11. These are mostly well-dispersed at pH 3 but appear to bundle at pH 11. Interestingly, the pH-dependent self-assembly behavior translates into a marked pH dependence of IRI activity. Lys2CP8 is IRI-active at pH 3 while inactive at pH 11 hypothetically because the ice-binding sites are inaccessible at pH 11 due to bundling.


Subject(s)
Ice , Nanotubes , Circular Dichroism , Microscopy, Electron, Transmission , Peptides, Cyclic , Spectroscopy, Fourier Transform Infrared
7.
Soft Matter ; 18(39): 7569-7578, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36165127

ABSTRACT

Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.


Subject(s)
Lipid Bilayers , Polyethylene Glycols , Colloids , Lipid Bilayers/chemistry , Polyethylene Glycols/chemistry
8.
Nano Lett ; 21(22): 9509-9516, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34757759

ABSTRACT

Super-resolution microscopy via PAINT has been widely adopted in life sciences to interrogate the nanoscale architecture of many cellular structures. However, obtaining quantitative information in fixed cellular samples remains challenging because control of labeling stoichiometry is hampered in current approaches due to click-chemistry and additional targeting probes. To overcome these challenges, we have identified a small, PDZ-based, peptide-protein interaction pair that is genetically encodable and compatible with super-resolution imaging upon cellular fixation without additional labeling. Stoichiometric labeling control by genetic incorporation of this probe into the cellular vimentin network and mitochondria resulted in super-resolved 3D reconstructions with high specificity and spatial resolution. Further characterization reveals that this peptide-protein interaction is compatible with quantitative PAINT and that its binding kinetics remains unaltered upon fixation. Finally, by fusion of our probe to nanobodies against conventional expression markers, we show that this approach provides a versatile addition to the super-resolution toolbox.


Subject(s)
DNA , Single-Domain Antibodies , Click Chemistry , DNA/chemistry , Microscopy, Fluorescence/methods , Peptides/genetics
9.
Angew Chem Int Ed Engl ; 61(39): e202206780, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35766724

ABSTRACT

We report a switchable, templated polymerization system where the strength of the templating effect can be modulated by solution pH and/or ionic strength. The responsiveness to these cues is incorporated through a dendritic polyamidoamine-based template of which the charge density depends on pH. The dendrimers act as a template for the polymerization of an oppositely charged monomer, namely sodium styrene sulfonate. We show that the rate of polymerization and maximum achievable monomer conversion are directly related to the charge density of the template, and hence the environmental pH. The polymerization could effectively be switched "ON" and "OFF" on demand, by cycling between acidic and alkaline reaction environments. These findings break ground for a novel concept, namely harnessing co-assembly of a template and growing polymer chains with tunable association strength to create and control coupled polymerization and self-assembly pathways of (charged) macromolecular building blocks.

10.
Small ; 17(13): e2007234, 2021 04.
Article in English | MEDLINE | ID: mdl-33690936

ABSTRACT

In natural systems, temperature-induced assembly of biomolecules can lead to the formation of distinct assembly states, created out of the same set of starting compounds, based on the heating trajectory followed. Until now it has been difficult to achieve similar behavior in synthetic polymer mixtures. Here, a novel pathway-dependent assembly based on stimulus-responsive polymers is shown. When a mixture of mono- and diblock copolymers, based on elastin-like polypeptides, is heated with a critical heating rate co-assembled particles are created that are monodisperse, stable, and have tunable hydrodynamic radii between 20 and 120 nm. Below this critical heating rate, the constituents separately form polymer assemblies. This process is kinetically driven and reversible in thermodynamically closed systems. Using the co-assembly pathway, fluorescent proteins and bioluminescent enzymes are encapsulated with high efficiency. Encapsulated cargo shows unperturbed function even after delivery into cells. The pathway-dependent co-assembly of elastin-like polypeptides is not only of fundamental interest from a materials science perspective, allowing the formation of multiple distinct assemblies from the same starting compounds, which can be interconverted by going back to the molecularly dissolved states. It also enables a versatile way for constructing highly effective vehicles for the cellular delivery of biomolecular cargo.


Subject(s)
Elastin , Peptides , Polymers , Temperature
11.
Chemistry ; 27(5): 1829-1838, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33176038

ABSTRACT

Synthetic stimuli responsive supramolecular polymers attract increasing interest for their ability to mimic the unique properties of natural assemblies. Here we focus on the well-studied benzene-1,3,5-tricarboxamide (BTA) motif, and substitute it with two (S)-3,7-dimethyloctyl groups and an azobenzene photoswitch. We demonstrate the UV (λ=365 nm) induced depolymerisation of the helical hydrogen-bonded polymers in methylcyclohexane (MCH) through circular dichroism and UV-vis spectroscopy in dilute solution (15 µm), and NMR and iPAINT super-resolution microscopy in concentrated solution (300 µm). The superstructure can be regenerated after thermal depolymerization, whilst repeated depolymerisation can be reversed without degradation by irradiating at λ=455 nm. Molecular dynamics simulations show that the most energetically favourable configuration for these polymers in MCH is a left-handed helical network of hydrogen-bonds between the BTA cores surrounded by two right-handed helices of azobenzenes. The responsiveness to two orthogonal triggers across a broad concentration range holds promise for use in, for example, photo-responsive gelation.

12.
Biomacromolecules ; 22(3): 1159-1166, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33630590

ABSTRACT

A polymeric corona consisting of an alkyl-glycolic acid ethoxylate (CXEOY) surfactant offers a promising approach toward endowing proteins with thermotropic phase behavior and hyperthermal activity. Typically, preparation of protein-surfactant biohybrids is performed via chemical modification of acidic residues followed by electrostatic conjugation of an anionic surfactant to encapsulate single proteins. While this procedure has been applied to a broad range of proteins, modification of acidic residues may be detrimental to function for specific enzymes. Herein, we report on the one-pot preparation of biohybrids via covalent conjugation of surfactants to accessible lysine residues. We entrap the model enzyme hen egg-white lysozyme (HEWL) in a shell of carboxyl-functionalized C12EO10 or C12EO22 surfactants. With fewer surfactants, our covalent biohybrids display similar thermotropic phase behavior to their electrostatically conjugated analogues. Through a combination of small-angle X-ray scattering and circular dichroism spectroscopy, we find that both classes of biohybrids consist of a folded single-protein core decorated by surfactants. Whilst traditional biohybrids retain densely packed surfactant coronas, our biohybrids display a less dense and heterogeneously distributed surfactant coverage located opposite to the catalytic cleft of HEWL. In solution, this surfactant coating permits 7- or 3.5-fold improvements in activity retention for biohybrids containing C12EO10 or C12EO22, respectively. The reported alternative pathway for biohybrid preparation offers a new horizon to expand upon the library of proteins for which functional biohybrid materials can be prepared. We also expect that an improved understanding of the distribution of tethered surfactants in the corona will be crucial for future structure-function investigations.


Subject(s)
Nanoparticles , Surface-Active Agents , Circular Dichroism , Polymers , Static Electricity
13.
Nano Lett ; 20(7): 4837-4841, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32479735

ABSTRACT

Pickering emulsions are increasingly applied in the production of medicines, cosmetics, and in food technology. To apply Pickering emulsions in a rational manner it is insufficient to examine properties solely on a macroscopic scale, as this does not elucidate heterogeneities in contact angles (θ) of individual particles, which may have a profound impact on stability and microstructure. Here, we apply the super-resolution technique iPAINT to elucidate for the first time the microscopic origins of macroscopically observed emulsion phase inversions induced by a variation in particle size and aqueous phase pH. We find θ of single carboxyl polystyrene submicron particles (CPS) significantly decreases due to increasing aqueous phase pH and particle size, respectively. Our findings confirm that θ of submicron particles are both size- and pH-dependent. Interestingly, for CPS stabilized water-octanol emulsions, this enables tuning of emulsion type from water-in-oil to oil-in-water by adjustments in either particle size or pH.

14.
J Am Chem Soc ; 142(22): 10069-10078, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32395995

ABSTRACT

One of the most appealing features of supramolecular assemblies is their ability to respond to external stimuli due to their noncovalent nature. This provides the opportunity to gain control over their size, morphology, and chemical properties and is key toward some of their applications. However, the design of supramolecular systems able to respond to multiple stimuli in a controlled fashion is still challenging. Here we report the synthesis and characterization of a novel discotic molecule, which self-assembles in water into a single-component supramolecular polymer that responds to multiple independent stimuli. The building block of such an assembly is a C3-symmetric monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated to a series of natural and non-natural functional amino acids. This design allows the use of rapid and efficient solid-phase synthesis methods and the modular implementation of different functionalities. The discotic monomer incorporates a hydrophobic azobenzene moiety, an octaethylene glycol chain, and a C-terminal lysine. Each of these blocks was chosen for two reasons: to drive the self-assembly in water by a combination of H-bonding and hydrophobicity and to impart specific responsiveness. With a combination of microscopy and spectroscopy techniques, we demonstrate self-assembly in water and responsiveness to temperature, light, pH, and ionic strength. This work shows the potential to integrate independent mechanisms for controlling self-assembly in a single-component supramolecular polymer by the rational monomer design and paves the way toward the use of multiresponsive systems in water.

15.
J Am Chem Soc ; 142(47): 19907-19916, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33191746

ABSTRACT

Despite a growing understanding of factors that drive monomer self-assembly to form supramolecular polymers, the effects of aromaticity gain have been largely ignored. Herein, we document the aromaticity gain in two different self-assembly modes of squaramide-based bolaamphiphiles. Importantly, O → S substitution in squaramide synthons resulted in supramolecular polymers with increased fiber flexibility and lower degrees of polymerization. Computations and spectroscopic experiments suggest that the oxo- and thiosquaramide bolaamphiphiles self-assemble into "head-to-tail" versus "stacked" arrangements, respectively. Computed energetic and magnetic criteria of aromaticity reveal that both modes of self-assembly increase the aromatic character of the squaramide synthons, giving rise to stronger intermolecular interactions in the resultant supramolecular polymer structures. These examples suggest that both hydrogen-bonding and stacking interactions can result in increased aromaticity upon self-assembly, highlighting its relevance in monomer design.


Subject(s)
Macromolecular Substances/chemistry , Polymers/chemistry , Quinine/analogs & derivatives , Hydrogen Bonding , Macromolecular Substances/chemical synthesis , Quantum Theory , Quinine/chemistry , Sulfur/chemistry
16.
Chemistry ; 26(66): 15330-15336, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-32783243

ABSTRACT

Silica materials attract an increasing amount of interest in (fundamental) research, and find applications in, for example, sensing, catalysis, and drug delivery. As the properties of these (nano)materials not only depend on their chemistry but also their size, shape, and surface area, the controllable synthesis of silica is essential for tailoring the materials to specific applications. Advantageously, bioinspired routes for silica production are environmentally friendly and straightforward since the formation process is spontaneous and proceeds under mild conditions. These strategies mostly employ amine-bearing phosphorylated (bio)polymers. In this work, we expand this principle to supramolecular polymers based on the water-soluble cationic cyanine dye Pinacyanol acetate. Upon assembly in water, these dye molecules form large, polyaminated, supramolecular fibers. The surfaces of these fibers can be used as a scaffold for the condensation of silicic acid. Control over the ionic strength, dye concentration, and silicic acid saturation yielded silica fibers with a diameter of 25 nm and a single, 4 nm pore. Unexpectedly, other unusual superstructures, namely, nummulites and spherulites, are also observed depending on the ionic strength and dye concentration. Transmission and scanning electron microscopy (TEM and SEM) showed that these superstructures are formed by aligned silica fibers. Close examination of the dye scaffold prior silicification using small-angle X-ray scattering (SAXS), and UV/Vis spectroscopy revealed minor influence of the ionic strength and dye concentration on the morphology of the supramolecular scaffold. Total internal reflection fluorescence (TIRF) during silicification unraveled that if the reaction is kept under static conditions, only silica fibers are obtained. Experiments performed on the dye scaffold and silica superstructures evidenced that the marked structural diversity originates from the arrangement of silica/dye fibers. Under these mild conditions, external force fields can profoundly influence the morphology of the produced silica.


Subject(s)
Amines , Silicon Dioxide , Amines/chemistry , Microscopy, Electron, Transmission , Scattering, Small Angle , Silicon Dioxide/chemistry , X-Ray Diffraction
17.
Langmuir ; 36(36): 10639-10656, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32787015

ABSTRACT

Transient assembled structures play an indispensable role in a wide variety of processes fundamental to living organisms including cellular transport, cell motility, and proliferation. Typically, the formation of these transient structures is driven by the consumption of molecular fuels via dissipative reaction networks. In these networks, building blocks are converted from inactive precursor states to active (assembling) states by (a set of) irreversible chemical reactions. Since the activated state is intrinsically unstable and can be maintained only in the presence of sufficient fuel, fuel depletion results in the spontaneous disintegration of the formed superstructures. Consequently, the properties and behavior of these assembled structures are governed by the kinetics of fuel consumption rather than by their thermodynamic stability. This fuel dependency endows biological systems with unprecedented spatiotemporal adaptability and inherent self-healing capabilities. Fascinated by these unique material characteristics, coupling the assembly behavior to molecular fuel or light-driven reaction networks was recently implemented in synthetic (supra)molecular systems. In this invited feature article, we discuss recent studies demonstrating that dissipative assembly is not limited to the molecular world but can also be translated to building blocks of colloidal dimensions. We highlight crucial guiding principles for the successful design of dissipative colloidal systems and illustrate these with the current state of the art. Finally, we present our vision on the future of the field and how marrying nonequilibrium self-assembly with the functional properties associated with colloidal building blocks presents a promising route for the development of next-generation materials.

18.
Langmuir ; 36(9): 2403-2418, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32097015

ABSTRACT

We report methods to synthesize sub-micron- and micron-sized patchy silica particles with fluorescently labeled hemispherical titania protrusions, as well as routes to efficiently characterize these particles and self-assemble these particles into non-close-packed structures. The synthesis methods expand upon earlier work in the literature, in which silica particles packed in a colloidal crystal were surface-patterned with a silane coupling agent. Here, hemispherical amorphous titania protrusions were successfully labeled with fluorescent dyes, allowing for imaging by confocal microscopy and super-resolution techniques. Confocal microscopy was exploited to experimentally determine the numbers of protrusions per particle over large numbers of particles for good statistical significance, and these distributions were compared to simulations predicting the number of patches as a function of core particle polydispersity and maximum separation between the particle surfaces. We self-assembled these patchy particles into open percolating gel networks by exploiting solvophobic attractions between the protrusions.

19.
Soft Matter ; 16(34): 7893-7897, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32832954

ABSTRACT

We present a simple way to build up well-controlled coacervate-core dendrimicelles by assembly of anionic PAMAM dendrimers with a cationic-neutral diblock copolymer. Upon increasing pH, the formation of micellar structures shows constant size but the number of dendrimer molecules incorporated in one micelle decreases, following the charge stoichiometry formation rules; concomitantly, the salt stability increases. This study shows the straightforward tuning of macromolecular core-units and related micelle properties.

20.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396960

ABSTRACT

The core of micelles self-assembled from amphiphiles is hydrophobic and contains little water, whereas complex coacervate core micelles co-assembled from oppositely charged hydrophilic polymers have a hydrophilic core with a high water content. Co-assembly of ionic surfactants with ionic-neutral copolymers yields surfactant-copolymer complexes known to be capable of solubilizing both hydrophilic and hydrophobic cargo within the mixed core composed of a coacervate phase with polyelectrolyte-decorated surfactant micelles. Here we formed such complexes from asymmetric (PUI-A2) and symmetric (PUI-S2), sequence-controlled polyurethane ionomers and poly(N-methyl-2-vinylpyridinium iodide)29-b-poly(ethylene oxide)204 copolymers. The complexes with PUI-S2 were 1.3-fold larger in mass and 1.8-fold larger in radius of gyration than the PUI-A2 complexes. Small-angle X-ray scattering revealed differences in the packing of the similarly sized PUI micelles within the core of the complexes. The PUI-A2 micelles were arranged in a more ordered fashion and were spaced further apart from each other (10 nm vs. 6 nm) than the PUI-S2 micelles. Hence, this work shows that the monomer sequence of amphiphiles can be varied to alter the internal structure of surfactant-copolymer complexes. Since the structure of the micellar core may affect both the cargo loading and release, our findings suggest that these properties may be tuned through control of the monomer sequence of the micellar constituents.


Subject(s)
Drug Carriers/chemistry , Polyelectrolytes/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Macromolecular Substances , Micelles
SELECTION OF CITATIONS
SEARCH DETAIL