Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37827158

ABSTRACT

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Subject(s)
Congenital Abnormalities , Developmental Disabilities , Histone-Lysine N-Methyltransferase , Humans , Gain of Function Mutation , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Lysine , Methylation , Methyltransferases/genetics , Neoplasms/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Developmental Disabilities/genetics , Congenital Abnormalities/genetics
2.
J Inherit Metab Dis ; 46(2): 326-334, 2023 03.
Article in English | MEDLINE | ID: mdl-36719165

ABSTRACT

Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.


Subject(s)
Congenital Disorders of Glycosylation , Niemann-Pick Disease, Type C , Oxysterols , Vacuolar Proton-Translocating ATPases , Infant , Child , Humans , Glycosylation , Bile Acids and Salts , Hydrolases
3.
Hum Mutat ; 41(11): 1906-1917, 2020 11.
Article in English | MEDLINE | ID: mdl-32939943

ABSTRACT

Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.


Subject(s)
Craniofacial Abnormalities/genetics , Hirschsprung Disease/genetics , Nerve Tissue Proteins/genetics , Adult , Child , Codon, Nonsense , Female , Genetic Association Studies , HEK293 Cells , Humans , Male , Mutation, Missense , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL