Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175837

ABSTRACT

Erythroid cells are emerging players in immunological regulation that have recently been shown to play a crucial role in fetomaternal tolerance in mice. In this work, we set ourselves the goal of discovering additional information about the molecular mechanisms of this process. We used flow cytometry to study placental erythroid cells' composition and BioPlex for the secretome profiling of 23 cytokines at E12.5 and E19.5 in both allogeneic and syngeneic pregnancies. We found that (1) placental erythroid cells are mainly represented by CD45+ erythroid cells; (2) the secretomes of CD71+ placental erythroid cells differ from the ones in syngeneic pregnancy; (3) CCL2, CCL3, CCL4 and CXCL1 chemokines were secreted on each day of embryonic development and in both types of pregnancy studied. We believe that these chemokines lure placental immune cells towards erythroid cells so that erythroid cells can induce anergy in those immune cells via cell-bound ligands such as PD-L1, enzymes such as ARG1, and secreted factors such as TGFß-1.


Subject(s)
Erythroid Cells , Placenta , Animals , Female , Mice , Pregnancy , Chemokine CCL3 , Chemokine CCL4 , Chemokines , Flow Cytometry , Immunosuppressive Agents
2.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958735

ABSTRACT

Mouse erythropoiesis is a multifaceted process involving the intricate interplay of proliferation, differentiation, and maturation of erythroid cells, leading to significant changes in their transcriptomic and proteomic profiles. While the immunoregulatory role of murine erythroid cells has been recognized historically, modern investigative techniques have been sparingly applied to decipher their functions. To address this gap, our study sought to comprehensively characterize mouse erythroid cells through contemporary transcriptomic and proteomic approaches. By evaluating CD71 and Ter-119 as sorting markers for murine erythroid cells and employing bulk NanoString transcriptomics, we discerned distinctive gene expression profiles between bone marrow and fetal liver-derived erythroid cells. Additionally, leveraging flow cytometry, we assessed the surface expression of CD44, CD45, CD71, and Ter-119 on normal and phenylhydrazine-induced hemolytic anemia mouse bone marrow and splenic erythroid cells. Key findings emerged: firstly, the utilization of CD71 for cell sorting yielded comparatively impure erythroid cell populations compared to Ter-119; secondly, discernible differences in immunoregulatory molecule expression were evident between erythroid cells from mouse bone marrow and fetal liver; thirdly, two discrete branches of mouse erythropoiesis were identified based on CD45 expression: CD45-negative and CD45-positive, which had been altered differently in response to phenylhydrazine. Our deductions underscore (1) Ter-119's superiority over CD71 as a murine erythroid cell sorting marker, (2) the potential of erythroid cells in murine antimicrobial immunity, and (3) the importance of investigating CD45-positive and CD45-negative murine erythroid cells separately and in further detail in future studies.


Subject(s)
Bone Marrow , Transcriptome , Animals , Mice , Bone Marrow Cells , Cell Differentiation , Erythroid Cells , Erythropoiesis/genetics , Liver , Phenylhydrazines , Proteomics
3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138998

ABSTRACT

This research delves into the intricate landscape of tumor necrosis factor-alpha (TNF-α) signaling, a multi-functional cytokine known for its diverse cellular effects. Specifically, we investigate the roles of two TNF receptors, TNFR1 and TNFR2, in mediating TNF-α-induced transcriptional responses. Using human K562 cell lines with TNFR1 and TNFR2 knockouts, we explore changes in gene expression patterns following TNF-α stimulation. Our findings reveal distinct transcriptional profiles in TNFR1 and TNFR2 knockout cells, shedding light on the unique contributions of these receptors to TNF-α signaling. Notably, several key pathways associated with inflammation, apoptosis, and cell proliferation exhibit altered regulation in the absence of TNFR1 or TNFR2. This study provides valuable insights into the intricate mechanisms governing TNF-α signaling and its diverse cellular effects, with potential implications for targeted therapeutic strategies.


Subject(s)
Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , Humans , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , K562 Cells , Cytokines/metabolism
4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894816

ABSTRACT

TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells. Flow cytometry analysis revealed a significant surge in cells expressing activation markers CD69, CD107a, and FasL upon encountering tumor cells, indicating robust T-cell activation and cytotoxicity. Moreover, immune transcriptome profiling unveiled heightened expression of pivotal T-effector genes involved in immune response and cell proliferation regulation. Additionally, multiplex assays also revealed increased cytokine production and cytotoxicity driven by granzymes and soluble Fas ligand (sFasL), suggesting enhanced anti-tumor immune responses. Preliminary in vivo investigations revealed a significant deceleration in tumor growth, highlighting the therapeutic potential of these TCR-like CAR-T cells. Further investigations are warranted to validate these revelations fully and harness the complete potential of TCR-like CAR-T cells in overcoming cancer's resilient defenses.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Neoplasms/metabolism , Immunotherapy, Adoptive , Cytotoxicity, Immunologic , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
5.
PLoS One ; 19(7): e0305816, 2024.
Article in English | MEDLINE | ID: mdl-39038020

ABSTRACT

Erythroid cells, serving as progenitors and precursors to erythrocytes responsible for oxygen transport, were shown to exhibit an immunosuppressive and immunoregulatory phenotype. Previous investigations from our research group have revealed an antimicrobial gene expression profile within murine bone marrow erythroid cells which suggested a role for erythroid cells in innate immunity. In the present study, we focused on elucidating the characteristics of human bone marrow erythroid cells through comprehensive analyses, including NanoString gene expression profiling utilizing the Immune Response V2 panel, a BioPlex examination of chemokine and TGF-beta family proteins secretion, and analysis of publicly available single-cell RNA-seq data. Our findings demonstrate that an erythroid cell subpopulation manifests a myeloid-like gene expression signature comprised of antibacterial immunity and neutrophil chemotaxis genes which suggests an involvement of human erythroid cells in the innate immunity. Furthermore, we found that human erythroid cells secreted CCL22, CCL24, CXCL5, CXCL8, and MIF chemokines. The ability of human erythroid cells to express these chemokines might facilitate the restriction of immune cells in the bone marrow under normal conditions or contribute to the ability of erythroid cells to induce local immunosuppression by recruiting immune cells in their immediate vicinity in case of extramedullary hematopoiesis.


Subject(s)
Erythroid Cells , Monocytes , Humans , Monocytes/metabolism , Monocytes/cytology , Monocytes/immunology , Erythroid Cells/metabolism , Erythroid Cells/cytology , Immunity, Innate , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Transcriptome , Gene Expression Profiling , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Myeloid Cells/metabolism , Chemokines/metabolism , Chemokines/genetics , Interleukin-8 , Intramolecular Oxidoreductases
6.
Cells ; 12(24)2023 12 10.
Article in English | MEDLINE | ID: mdl-38132130

ABSTRACT

Hypoxia leads to metabolic changes at the cellular, tissue, and organismal levels. The molecular mechanisms for controlling physiological changes during hypoxia have not yet been fully studied. Erythroid cells are essential for adjusting the rate of erythropoiesis and can influence the development and differentiation of immune cells under normal and pathological conditions. We simulated high-altitude hypoxia conditions for mice and assessed the content of erythroid nucleated cells in the spleen and bone marrow under the existing microenvironment. For a pure population of CD71+ erythroid cells, we assessed the production of cytokines and the expression of genes that regulate the immune response. Our findings show changes in the cellular composition of the bone marrow and spleen during hypoxia, as well as changes in the composition of the erythroid cell subpopulations during acute hypoxic exposure in the form of a decrease in orthochromatophilic erythroid cells that are ready for rapid enucleation and the accumulation of their precursors. Cytokine production normally differs only between organs; this effect persists during hypoxia. In the bone marrow, during hypoxia, genes of the C-lectin pathway are activated. Thus, hypoxia triggers the activation of various adaptive and compensatory mechanisms in order to limit inflammatory processes and modify metabolism.


Subject(s)
Bone Marrow , Spleen , Mice , Animals , Bone Marrow/pathology , Erythropoiesis/physiology , Hypoxia/pathology , Erythroid Cells/pathology
7.
Biomedicines ; 11(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37893178

ABSTRACT

Adoptive T-cell therapies tailored for the treatment of solid tumors encounter intricate challenges, necessitating the meticulous selection of specific target antigens and the engineering of highly specific T-cell receptors (TCRs). This study delves into the cytotoxicity and functional characteristics of in vitro-cultured T-lymphocytes, equipped with a TCR designed to precisely target the cancer-testis antigen NY-ESO-1. Flow cytometry analysis unveiled a notable increase in the population of cells expressing activation markers upon encountering the NY-ESO-1-positive tumor cell line, SK-Mel-37. Employing the NanoString platform, immune transcriptome profiling revealed the upregulation of genes enriched in Gene Ontology Biological Processes associated with the IFN-γ signaling pathway, regulation of T-cell activation, and proliferation. Furthermore, the modified T cells exhibited robust cytotoxicity in an antigen-dependent manner, as confirmed by the LDH assay results. Multiplex immunoassays, including LEGENDplex™, additionally demonstrated the elevated production of cytotoxicity-associated cytokines driven by granzymes and soluble Fas ligand (sFasL). Our findings underscore the specific targeting potential of engineered TCR T cells against NY-ESO-1-positive tumors. Further comprehensive in vivo investigations are essential to thoroughly validate these results and effectively harness the intrinsic potential of genetically engineered T cells for combating cancer.

8.
Genes (Basel) ; 13(7)2022 07 19.
Article in English | MEDLINE | ID: mdl-35886060

ABSTRACT

Autoimmune regulator (AIRE) is a multifunctional protein that is capable of inducing tissue-specific antigens' (TSAs) gene expression, a key event in the induction of self-tolerance, that is usually expressed and functions in the thymus. However, its expression has been detected outside the thymus and cells expressing the gene have been named extra-thymic AIRE expressing cells (eTACs). Here, we discuss the finding of AIRE and TSAs gene expression in CD71+ cells from human fetal liver parenchyma, which are mostly represented by CD71+ erythroid cells.


Subject(s)
Antigens , Immune Tolerance , Gene Expression , Humans , Liver
9.
Cells ; 11(22)2022 11 09.
Article in English | MEDLINE | ID: mdl-36428967

ABSTRACT

Nucleated erythroid cells (NECs) are the precursors of erythrocytes. They can be found in various hematopoietic tissues or in the blood. Recently, they have been shown to be active players in immunosuppression through the synthesis of arginase-2 and reactive oxygen species. In this work, we studied NECs in adult bone marrow, umbilical cord blood, and foetal liver parenchyma using single-cell RNA sequencing and found that: (1) all studied NECs expressed the same set of genes, which was enriched in "GO biological process" immunity-related terms; (2) early and late NECs had differential expression of the genes associated with immunosuppression, cell cycle progression, apoptosis, and glycolysis; (3) NECs from different tissues of origin had differential expression of the genes associated with immunosuppression.


Subject(s)
Erythrocytes , Transcriptome , Adult , Humans , Transcriptome/genetics , Cell Count , Erythrocytes/metabolism , Fetal Blood , RNA/genetics , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL