Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 605
Filter
Add more filters

Publication year range
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33497611

ABSTRACT

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA Helicases/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Tuberous Sclerosis/metabolism , Amino Acid Sequence , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , DNA Helicases/chemistry , Evolution, Molecular , Female , Humans , Insulin/pharmacology , Lysosomal Membrane Proteins/metabolism , Lysosomes/drug effects , Neurons/drug effects , Neurons/metabolism , Phenotype , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry , Rats, Wistar , Signal Transduction/drug effects , Zebrafish/metabolism
2.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32818467

ABSTRACT

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Subject(s)
L-Amino Acid Oxidase/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Adult , Aged , Animals , Cell Line , Cell Line, Tumor , Disease Progression , Female , Glioma/immunology , Glioma/metabolism , Glioma/therapy , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , Rats
3.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265402

ABSTRACT

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Subject(s)
Brain Neoplasms/genetics , Gene Rearrangement , Medulloblastoma/genetics , Tumor Suppressor Protein p53/genetics , Animals , Child , Chromosome Aberrations , DNA Copy Number Variations , DNA Mutational Analysis , Disease Models, Animal , Humans , Leukemia, Myeloid, Acute/genetics , Li-Fraumeni Syndrome/physiopathology , Mice , Middle Aged
4.
Nature ; 592(7854): 463-468, 2021 04.
Article in English | MEDLINE | ID: mdl-33762734

ABSTRACT

Mutated isocitrate dehydrogenase 1 (IDH1) defines a molecularly distinct subtype of diffuse glioma1-3. The most common IDH1 mutation in gliomas affects codon 132 and encodes IDH1(R132H), which harbours a shared clonal neoepitope that is presented on major histocompatibility complex (MHC) class II4,5. An IDH1(R132H)-specific peptide vaccine (IDH1-vac) induces specific therapeutic T helper cell responses that are effective against IDH1(R132H)+ tumours in syngeneic MHC-humanized mice4,6-8. Here we describe a multicentre, single-arm, open-label, first-in-humans phase I trial that we carried out in 33 patients with newly diagnosed World Health Organization grade 3 and 4 IDH1(R132H)+ astrocytomas (Neurooncology Working Group of the German Cancer Society trial 16 (NOA16), ClinicalTrials.gov identifier NCT02454634). The trial met its primary safety endpoint, with vaccine-related adverse events restricted to grade 1. Vaccine-induced immune responses were observed in 93.3% of patients across multiple MHC alleles. Three-year progression-free and death-free rates were 0.63 and 0.84, respectively. Patients with immune responses showed a two-year progression-free rate of 0.82. Two patients without an immune response showed tumour progression within two years of first diagnosis. A mutation-specificity score that incorporates the duration and level of vaccine-induced IDH1(R132H)-specific T cell responses was associated with intratumoral presentation of the IDH1(R132H) neoantigen in pre-treatment tumour tissue. There was a high frequency of pseudoprogression, which indicates intratumoral inflammatory reactions. Pseudoprogression was associated with increased vaccine-induced peripheral T cell responses. Combined single-cell RNA and T cell receptor sequencing showed that tumour-infiltrating CD40LG+ and CXCL13+ T helper cell clusters in a patient with pseudoprogression were dominated by a single IDH1(R132H)-reactive T cell receptor.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Glioma/diagnosis , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mutation , Adult , Cells, Cultured , Disease Progression , Female , Glioma/genetics , Glioma/immunology , Humans , Male , Mutant Proteins/genetics , Mutant Proteins/immunology , Phenotype , Receptors, Antigen, T-Cell/immunology , Survival Rate , T-Lymphocytes/immunology
5.
J Pathol ; 262(1): 4-9, 2024 01.
Article in English | MEDLINE | ID: mdl-37850576

ABSTRACT

Mesonephric-like adenocarcinoma (MLA) of the female genital tract is an uncommon histotype that can arise in both the endometrium and the ovary. The exact cell of origin and histogenesis currently remain unknown. Here, we investigated whole genome DNA methylation patterns and copy number variations (CNVs) in a series of MLAs in the context of a large cohort of various gynaecological carcinoma types. CNV analysis of 19 MLAs uncovered gains of chromosomes 1q (18/19, 95%), 10 (15/19, 79%), 12 (14/19, 74%), and 2 (10/19, 53%), as well as loss of chromosome 1p (7/19, 37%). Gains of chromosomes 1q, 10, and 12 were also identified in the majority of mesonephric adenocarcinomas of the uterine cervix (MAs) as well as subsets of endometrioid carcinomas (ECs) and low-grade serous carcinomas of the ovary (LGSCs) but only in a minority of serous carcinomas of the uterine corpus (USCs), clear cell carcinomas (CCCs), and tubo-ovarian high-grade serous carcinomas (HGSCs). While losses of chromosome 1p together with gains of chromosome 1q were also identified in both MA and LGSC, gains of chromosome 2 were almost exclusively identified in MLA and MA. Unsupervised hierarchical clustering and t-SNE analysis of DNA methylation data (Illumina EPIC array) identified a co-clustering for MLAs and MAs, which was distinct from clusters of ECs, USCs, CCCs, LGSCs, and HGSCs. Group-wise comparisons confirmed a close epigenetic relationship between MLA and MA. These findings, in conjunction with the established histological and immunophenotypical overlap, suggest bona fide mesonephric differentiation, and support a more precise terminology of mesonephric-type adenocarcinoma instead of MLA in these tumours. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Endometrioid , Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Cervix Uteri/pathology , DNA Copy Number Variations , DNA Methylation , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Cystadenocarcinoma, Serous/genetics , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
7.
Nature ; 565(7738): 240-245, 2019 01.
Article in English | MEDLINE | ID: mdl-30568303

ABSTRACT

Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Glioblastoma/diagnosis , Glioblastoma/therapy , Precision Medicine/methods , Adult , Aged , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Female , Glioblastoma/immunology , HLA-A Antigens/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , T-Lymphocytes, Helper-Inducer/immunology , Treatment Outcome
8.
Mod Pathol ; 37(1): 100374, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925057

ABSTRACT

Dedifferentiated and undifferentiated ovarian carcinomas (DDOC/UDOC) are rare neoplasms defined by the presence of an undifferentiated carcinoma. In this study, we detailed the clinical, pathological, immunohistochemical, and molecular features of a series of DDOC/UDOC. We collected a multi-institutional cohort of 23 DDOC/UDOC and performed immunohistochemistry for core switch/sucrose nonfermentable (SWI/SNF) complex proteins (ARID1A, ARID1B, SMARCA4, and SMARCB1), mismatch repair (MMR) proteins, and p53. Array-based genome-wide DNA methylation and copy number variation analyses were performed on a subset of cases with comparison made to a previously reported cohort of undifferentiated endometrial carcinoma (UDEC), small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), and tubo-ovarian high-grade serous carcinoma (HGSC). The age of all 23 patients with DDOC/UDOC ranged between 22 and 71 years (with an average age of 50 years), and a majority of them presented with extraovarian disease (16/23). Clinical follow-up was available for 19 patients. Except for 2 patients, the remaining 17 patients died from disease, with rapid disease progression resulting in mortality within a year in stage II-IV settings (median disease-specific survival of 3 months). Eighteen of 22 cases with interpretable immunohistochemistry results showed loss of expression of core SWI/SNF protein(s) that are expected to result in SWI/SNF complex inactivation as 10 exhibited coloss of ARID1A and ARID1B, 7 loss of SMARCA4, and 1 loss of SMARCB1. Six of 23 cases were MMR-deficient. Two of 20 cases exhibited mutation-type p53 immunoreactivity. Methylation profiles showed coclustering of DDOC/UDOC with UDEC, which collectively were distinct from SCCOHT and HGSC. However, DDOC/UDOC showed an intermediate degree of copy number variation, which was slightly greater, compared with SCCOHT but much less compared with HGSC. Overall, DDOC/UDOC, like its endometrial counterpart, is highly aggressive and is characterized by frequent inactivation of core SWI/SNF complex proteins and MMR deficiency. Its molecular profile overlaps with UDEC while being distinct from SCCOHT and HGSC.


Subject(s)
Brain Neoplasms , Carcinoma, Small Cell , Carcinoma , Colorectal Neoplasms , Endometrial Neoplasms , Neoplastic Syndromes, Hereditary , Ovarian Neoplasms , Female , Humans , Middle Aged , Young Adult , Adult , Aged , Tumor Suppressor Protein p53/genetics , DNA Copy Number Variations , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma/pathology , Carcinoma, Ovarian Epithelial , Endometrial Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Mod Pathol ; : 100539, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880352

ABSTRACT

EGFR aberrations are reported in a subset of myofibroblastic lesions with kinase domain duplication (EGFR-KDD) and exon 20 mutations being assigned to infantile fibrosarcomas (IFS), mesoblastic nephroma and fibrous hamartoma of infancy (FHI), respectively. In this retrospective study, we correlated molecular findings with histomorphology of 14 myofibroblastic lesions harboring such genetic changes identified by NGS. We additionally performed DNA methylation profiling (DNAmp) and immunohistochemistry. Lesions were from 10 males and 4 females with a mean age of 3 years (range, 0.3 -14) and occurred subcutaneously in the upper limbs (n = 5), lower limbs (n = 3), back/thorax (n = 5), and the nasal cavity (n = 1). Eleven were cured by surgery, including one relapsed case. Two patients were lost to follow-up. One case was very recent, and the patient was biopsied. Histologically, the lesions showed a wide spectrum varying from classic FHI (n=9) to IFS (n=1) or lipofibromatosis-like tumors (LFT-like) (n=2) or dermatofibrosarcoma protuberans-like (DFSP-like) (n=1) to a predominantly-myxoid spindle cell lesion (n=1). Immunohistochemically, all neoplasms stained with CD34, while S100 was positive in 2/14. EGFR expression was observed in 9/10 cases. Molecularly, the IFS and one LFT-like harbored EGFR-KDD, while an exon 20 mutation was identified in all FHI, one LFT-like and in the DFSP-like and predominantly myxoid spindle cell lesion. By DNAmp, all but two cases formed a well-defined cluster, demonstrating that these lesions are also epigenetically related. In conclusion, EGFR kinase domain aberrations found in FHI, IFS, LFT-like, DFSP-like and a spindle cell lesion with a predominant myxoid stroma of children and adolescents show that these neoplasms with a broad morphological spectrum belong to the group of protein kinase-related lesions with a distinct epigenetic signature. Molecular analyses, including DNAmp, help to identify and characterize this emerging category and become mandatory when targeted treatment is considered.

10.
Acta Neuropathol ; 147(1): 95, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38847845

ABSTRACT

The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Transcriptome , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Cell Proliferation/genetics , Male , Child , Female , Child, Preschool , Adolescent , Prognosis
11.
Acta Neuropathol ; 147(1): 11, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38183430

ABSTRACT

Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.


Subject(s)
Astrocytoma , Isocitrate Dehydrogenase , Humans , Astrocytoma/genetics , Astrocytoma/therapy , Cohort Studies , Homozygote , Isocitrate Dehydrogenase/genetics , Prognosis , Retrospective Studies , Sequence Deletion
12.
Acta Neuropathol ; 147(1): 22, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38265489

ABSTRACT

Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.


Subject(s)
Ependymoma , Spinal Cord Neoplasms , Adult , Child , Humans , Transcriptome , Gene Expression Profiling , Mutation , Epigenesis, Genetic
13.
Histopathology ; 84(4): 683-696, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084641

ABSTRACT

AIMS: Ovarian Wilms tumour (WT)/nephroblastoma is an extremely rare neoplasm that has been reported to occur in pure form or as a component of a teratomatous neoplasm. We hypothesized that teratoma-associated and pure ovarian WT may represent different tumour types with diverging molecular backgrounds. To test this hypothesis, we comprehensively characterized a series of five tumours originally diagnosed as ovarian WT. METHODS AND RESULTS: The five cases comprised three teratoma-associated (two mature and one immature) and two pure WTs. Two of the teratoma-associated WTs consisted of small nodular arrangements of "glandular"/epithelial structures, while the third consisted of both an epithelial and a diffuse spindle cell/blastemal component. The pure WTs consisted of "glandular" structures, which were positive for sex cord markers (including inhibin and SF1) together with a rhabdomyosarcomatous component. The two pure WTs harboured DICER1 pathogenic variants (PVs), while the three associated with teratomas were DICER1 wildtype. Panel-based DNA sequencing of four of the cases did not identify PVs in the other genes investigated. Analysis of the HA19/IGF2 imprinting region showed retention of imprinting in the pure WTs but loss of heterozygosity with hypomethylation of the ICR1 region in two of three teratoma-associated WTs. Furthermore, copy number variation and clustering-based whole-genome DNA methylation analyses identified divergent molecular profiles for pure and teratoma-associated WTs. CONCLUSION: Based on the morphological features, immunophenotype, and molecular findings (DICER1 PVs, copy number, and DNA methylation profiles), we suggest that the two cases diagnosed as pure primary ovarian WT represent moderately to poorly differentiated Sertoli Leydig cell tumours (SLCTs), while the tumours arising in teratomas represent true WTs. It is possible that at least some prior cases reported as pure primary ovarian WT represent SLCTs.


Subject(s)
Kidney Neoplasms , Ovarian Neoplasms , Sex Cord-Gonadal Stromal Tumors , Teratoma , Wilms Tumor , Male , Female , Humans , DNA Copy Number Variations , Wilms Tumor/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Teratoma/genetics , Teratoma/pathology , Kidney Neoplasms/genetics , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics
14.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605332

ABSTRACT

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Subject(s)
Extracellular Vesicles , Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Meningeal Neoplasms/surgery , Prospective Studies , Liquid Biopsy , Biomarkers , Extracellular Vesicles/pathology
15.
J Neurooncol ; 167(2): 245-255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334907

ABSTRACT

PURPOSE: Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS: Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS: Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION: Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.


Subject(s)
Brain Neoplasms , Glioma , Humans , Reoperation , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Retrospective Studies , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/surgery , Precision Medicine , Glioma/genetics , Glioma/surgery , Glioma/pathology
16.
J Neurooncol ; 166(2): 359-368, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38253790

ABSTRACT

PURPOSE: To provide a treatment-focused review and develop basic treatment guidelines for patients diagnosed with pineal anlage tumor (PAT). METHODS: Prospectively collected data of three patients with pineal anlage tumor from Germany was combined with clinical details and treatment information from 17 published cases. RESULTS: Overall, 20 cases of PAT were identified (3 not previously reported German cases, 17 cases from published reports). Age at diagnosis ranged from 0.3 to 35.0 (median: 3.2 ± 7.8) years. All but three cases were diagnosed before the age of three years. For three cases, metastatic disease at initial staging was described. All patients underwent tumor surgery (gross-total resection: 9, subtotal resection/biopsy: 9, extent of resection unknown: 2). 15/20 patients were alive at last follow-up. Median follow-up for 10/15 surviving patients with available follow-up and treatment data was 2.4 years (0.3-6.5). Relapse was reported for 3 patients within 0.8 years after diagnosis. Five patients died, 3 after relapse and 2 from early postoperative complications. Two-year-progression-free- and -overall survival were 65.2 ± 12.7% and 49.2 ± 18.2%, respectively. All 4 patients who received intensive chemotherapy including high-dose chemotherapy combined with radiotherapy (2 focal, 2 craniospinal [CSI]) had no recurrence. Focal radiotherapy- and CSI-free survival rates in 13 evaluable patients were 46.2% (6/13) and 61.5% (8/13), respectively. CONCLUSION: PAT is an aggressive disease mostly affecting young children. Therefore, adjuvant therapy using intensive chemotherapy and considering radiotherapy appears to comprise an appropriate treatment strategy. Reporting further cases is crucial to evaluate distinct treatment strategies.


Subject(s)
Brain Neoplasms , Pineal Gland , Pinealoma , Supratentorial Neoplasms , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Young Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Neoplasm Recurrence, Local/pathology , Pineal Gland/surgery , Pineal Gland/pathology , Pinealoma/diagnosis , Pinealoma/surgery , Recurrence , Supratentorial Neoplasms/pathology , Treatment Outcome
17.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630384

ABSTRACT

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Subject(s)
Brain Neoplasms , Cytokines , Glioma , Microglia , Mutation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Microglia/metabolism , Microglia/drug effects , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Glioma/genetics , Cytokines/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Child , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , MAP Kinase Signaling System/drug effects
18.
J Intern Med ; 294(4): 455-481, 2023 10.
Article in English | MEDLINE | ID: mdl-37641393

ABSTRACT

Precision cancer medicine is a multidisciplinary team effort that requires involvement and commitment of many stakeholders including the society at large. Building on the success of significant advances in precision therapy for oncological patients over the last two decades, future developments will be significantly shaped by improvements in scalable molecular diagnostics in which increasingly complex multilayered datasets require transformation into clinically useful information guiding patient management at fast turnaround times. Adaptive profiling strategies involving tissue- and liquid-based testing that account for the immense plasticity of cancer during the patient's journey and also include early detection approaches are already finding their way into clinical routine and will become paramount. A second major driver is the development of smart clinical trials and trial concepts which, complemented by real-world evidence, rapidly broaden the spectrum of therapeutic options. Tight coordination with regulatory agencies and health technology assessment bodies is crucial in this context. Multicentric networks operating nationally and internationally are key in implementing precision oncology in clinical practice and support developing and improving the ecosystem and framework needed to turn invocation into benefits for patients. The review provides an overview of the diagnostic tools, innovative clinical studies, and collaborative efforts needed to realize precision cancer medicine.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Ecosystem
19.
Mod Pathol ; 36(3): 100044, 2023 03.
Article in English | MEDLINE | ID: mdl-36788095

ABSTRACT

High-grade endometrial stromal sarcomas (HGESSs) are aggressive uterine tumors harboring oncogenic fusion proteins. We performed a molecular study of 36 HGESSs with YWHAE::NUTM2 gene fusion, assessing co-occurring genetic events, and showed that these tumors frequently harbor recurrent events involving the CDKN2A locus on chromosome 9p. Using array-based copy number profiling and CDKN2A fluorescence in situ hybridization, we identified homozygous and hemizygous deletions of CDKN2A in 18% and 14% of tumors (n = 22 analyzed), respectively. While all YWHAE-rearranged HGESSs with retained disomy for CDKN2A were immunohistochemically positive for p16INK4 (p16), all tumors with homozygous deletion of CDKN2A showed complete absence of p16 staining. Of the 2 tumors with a hemizygous deletion of CDKN2A, 1 showed diffuse and strong p16 positivity, whereas the other showed complete absence of staining. In the p16-negative case, we did not find intragenic mutations or DNA promoter methylation to explain the p16 protein loss, implicating other mechanisms in the regulation of protein expression. In our cohort, subclonal or complete absence of p16 staining was associated with worse overall survival compared with positive p16 staining (1-year overall survival: 28.6% vs 90.7%, respectively; n = 32; P < .001), with all 7 patients in the p16-negative group having succumbed to their disease within 2 years of diagnosis. Our results suggested CDKN2A alterations as a cooperative driver of tumorigenesis in a subset of HGESSs with the YWHAE::NUTM2 gene fusion and showed p16 to be a potential prognostic marker.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Sarcoma , Female , Humans , Endometrial Neoplasms/pathology , Prognosis , In Situ Hybridization, Fluorescence , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/pathology , Homozygote , Sequence Deletion , Sarcoma/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Fusion , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism
20.
Neuropathol Appl Neurobiol ; 49(4): e12915, 2023 08.
Article in English | MEDLINE | ID: mdl-37296499

ABSTRACT

AIMS: Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder caused by hypomorphic mutations of NBS1. NBS1 is a member of the MRE11-RAD50-NBS1 (MRN) complex that binds to DNA double-strand breaks and activates the DNA damage response (DDR). Nbs1 inactivation in neural progenitor cells leads to microcephaly and premature death. Interestingly, p53 homozygous deletion rescues the NBS1-deficient phenotype allowing long-term survival. The objective of this work was to determine whether simultaneous inactivation of Nbs1 and p53 in neural progenitors triggered brain tumorigenesis and if so in which category this tumour could be classified. METHODS: We generated a mouse model with simultaneous genetic inactivation of Nbs1 and p53 in embryonic neural stem cells and analysed the arising tumours with in-depth molecular analyses including immunohistochemistry, array comparative genomic hybridisation (aCGH), whole exome-sequencing and RNA-sequencing. RESULTS: NBS1/P53-deficient mice develop high-grade gliomas (HGG) arising in the olfactory bulbs and in the cortex along the rostral migratory stream. In-depth molecular analyses using immunohistochemistry, aCGH, whole exome-sequencing and RNA-sequencing revealed striking similarities to paediatric human HGG with shared features with radiation-induced gliomas (RIGs). CONCLUSIONS: Our findings show that concomitant inactivation of Nbs1 and p53 in mice promotes HGG with RIG features. This model could be useful for preclinical studies to improve the prognosis of these deadly tumours, but it also highlights the singularity of NBS1 among the other DNA damage response proteins in the aetiology of brain tumours.


Subject(s)
Glioma , Tumor Suppressor Protein p53 , Animals , Child , Humans , Mice , Cell Cycle Proteins/genetics , Glioma/genetics , Homozygote , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Sequence Deletion , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL