Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179904

ABSTRACT

Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.

2.
Eur J Nucl Med Mol Imaging ; 51(5): 1310-1322, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38052927

ABSTRACT

PURPOSE: Positron emission tomography (PET) provides precise molecular information on physiological processes, but its low temporal resolution is a major obstacle. Consequently, we characterized the metabolic response of the human brain to working memory performance using an optimized functional PET (fPET) framework at a temporal resolution of 3 s. METHODS: Thirty-five healthy volunteers underwent fPET with [18F]FDG bolus plus constant infusion, 19 of those at a hybrid PET/MRI scanner. During the scan, an n-back working memory paradigm was completed. fPET data were reconstructed to 3 s temporal resolution and processed with a novel sliding window filter to increase signal to noise ratio. BOLD fMRI signals were acquired at 2 s. RESULTS: Consistent with simulated kinetic modeling, we observed a constant increase in the [18F]FDG signal during task execution, followed by a rapid return to baseline after stimulation ceased. These task-specific changes were robustly observed in brain regions involved in working memory processing. The simultaneous acquisition of BOLD fMRI revealed that the temporal coupling between hemodynamic and metabolic signals in the primary motor cortex was related to individual behavioral performance during working memory. Furthermore, task-induced BOLD deactivations in the posteromedial default mode network were accompanied by distinct temporal patterns in glucose metabolism, which were dependent on the metabolic demands of the corresponding task-positive networks. CONCLUSIONS: In sum, the proposed approach enables the advancement from parallel to truly synchronized investigation of metabolic and hemodynamic responses during cognitive processing. This allows to capture unique information in the temporal domain, which is not accessible to conventional PET imaging.


Subject(s)
Fluorodeoxyglucose F18 , Neurovascular Coupling , Humans , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , Brain/metabolism , Magnetic Resonance Imaging/methods
3.
Neuroimage ; 271: 120030, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36925087

ABSTRACT

The nervous and circulatory system interconnects the various organs of the human body, building hierarchically organized subsystems, enabling fine-tuned, metabolically expensive brain-body and inter-organ crosstalk to appropriately adapt to internal and external demands. A deviation or failure in the function of a single organ or subsystem could trigger unforeseen biases or dysfunctions of the entire network, leading to maladaptive physiological or psychological responses. Therefore, quantifying these networks in healthy individuals and patients may help further our understanding of complex disorders involving body-brain crosstalk. Here we present a generalized framework to automatically estimate metabolic inter-organ connectivity utilizing whole-body functional positron emission tomography (fPET). The developed framework was applied to 16 healthy subjects (mean age ± SD, 25 ± 6 years; 13 female) that underwent one dynamic 18F-FDG PET/CT scan. Multiple procedures of organ segmentation (manual, automatic, circular volumes) and connectivity estimation (polynomial fitting, spatiotemporal filtering, covariance matrices) were compared to provide an optimized thorough overview of the workflow. The proposed approach was able to estimate the metabolic connectivity patterns within brain regions and organs as well as their interactions. Automated organ delineation, but not simplified circular volumes, showed high agreement with manual delineation. Polynomial fitting yielded similar connectivity as spatiotemporal filtering at the individual subject level. Furthermore, connectivity measures and group-level covariance matrices did not match. The strongest brain-body connectivity was observed for the liver and kidneys. The proposed framework offers novel opportunities towards analyzing metabolic function from a systemic, hierarchical perspective in a multitude of physiological pathological states.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Female , Humans , Brain/metabolism , Fluorodeoxyglucose F18/metabolism , Human Body , Positron-Emission Tomography/methods , Male , Young Adult , Adult
4.
Int J Neuropsychopharmacol ; 26(2): 116-124, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36573644

ABSTRACT

BACKGROUND: Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS: Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS: No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS: In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER: NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).


Subject(s)
DNA Methylation , Harmine , Humans , Female , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Carbon Radioisotopes , Positron-Emission Tomography/methods
5.
Mol Psychiatry ; 27(11): 4502-4509, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36071112

ABSTRACT

Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.


Subject(s)
Selective Serotonin Reuptake Inhibitors , Serotonin Plasma Membrane Transport Proteins , Female , Humans , Male , ATP Binding Cassette Transporter, Subfamily B/genetics , Brain/metabolism , Citalopram/pharmacology , Citalopram/therapeutic use , Positron-Emission Tomography , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Cross-Over Studies
6.
J Nucl Cardiol ; 30(5): 1810-1821, 2023 10.
Article in English | MEDLINE | ID: mdl-36855009

ABSTRACT

BACKGROUND: Myocardial glycosphingolipid accumulation in patients with Fabry disease (FD) causes biochemical and structural changes. This study aimed to investigate sympathetic innervation in FD using hybrid cardiac positron emission tomography (PET)/magnetic resonance imaging (MRI). METHODS AND RESULTS: Patients with different stages of Fabry disease were prospectively enrolled to undergo routine CMR at 1.5T, followed by 3T hybrid cardiac PET/MRI with [11C]meta-hydroxyephedrine ([11C]mHED). Fourteen patients with either no evidence of cardiac involvement (n = 5), evidence of left ventricular hypertrophy (LVH) (n = 3), or evidence of LVH and fibrosis via late gadolinium enhancement (LGE) (n = 6) were analyzed. Compared to patients without LVH, patients with LVH or LVH and LGE had lower median T1 relaxation times (ms) at 1.5 T (1007 vs. 889 vs. 941 ms, p = 0.003) and 3T (1290 vs. 1172 vs. 1184 p = .014). Myocardial denervation ([11C]mHED retention < 7%·min) was prevalent only in patients with fibrosis, where a total of 16 denervated segments was found in two patients. The respective area of denervation exceeded the area of LGE in both patients (24% vs. 36% and 4% vs. 32%). However, sympathetic innervation defects ([11C]mHED retention ≤ 9%·min) occurred in all study groups. Furthermore, a reduced sympathetic innervation correlated with an increased left ventricular mass (p = .034, rs = - 0.57) and a reduced global longitudinal strain (GLS) (p = 0.023, rs = - 0.6). CONCLUSION: Hybrid cardiac PET/MR with [11C]mHED revealed sympathetic innervation defects, accompanied by impaired GLS, in early stages of Fabry disease. However, denervation is only present in patients with advanced stages of FD showing fibrosis on CMR.


Subject(s)
Ephedrine/analogs & derivatives , Fabry Disease , Humans , Fabry Disease/diagnostic imaging , Fabry Disease/complications , Contrast Media , Gadolinium , Tomography, X-Ray Computed/adverse effects , Hypertrophy, Left Ventricular/complications , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , Sympathectomy/adverse effects , Fibrosis , Magnetic Resonance Spectroscopy/adverse effects
7.
Basic Res Cardiol ; 117(1): 42, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008727

ABSTRACT

Sympathetic nerve denervation after myocardial infarction (MI) predicts risk of sudden cardiac death. Therefore, therapeutic approaches limit infarct size, improving adverse remodeling and restores sympathetic innervation have a great clinical potential. Remote ischemic perconditioning (RIPerc) could markedly attenuate MI-reperfusion (MIR) injury. In this study, we aimed to assess its effects on cardiac sympathetic innervation and metabolism. Transient myocardial ischemia is induced by ligature of the left anterior descending coronary artery (LAD) in male Sprague-Dawley rats, and in vivo cardiac 2-[18F]FDG and [11C]mHED PET scans were performed at 14-15 days after ischemia. RIPerc was induced by three cycles of 5-min-long unilateral hind limb ischemia and intermittent 5 min of reperfusion during LAD occlusion period. The PET quantitative parameters were quantified in parametric polar maps. This standardized format facilitates the regional radioactive quantification in deficit regions to remote areas. The ex vivo radionuclide distribution was additionally identified using autoradiography. Myocardial neuron density (tyrosine hydroxylase positive staining) and chondroitin sulfate proteoglycans (CSPG, inhibiting neuron regeneration) expression were assessed by immunohistochemistry. There was no significant difference in the mean hypometabolism 2-[18F]FDG uptake ratio (44.6 ± 4.8% vs. 45.4 ± 4.4%) between MIR rats and MIR + RIPerc rats (P > 0.05). However, the mean [11C]mHED nervous activity of denervated myocardium was significantly elevated in MIR + RIPerc rats compared to the MIR rats (35.9 ± 7.1% vs. 28.9 ± 2.3%, P < 0.05), coupled with reduced denervated myocardium area (19.5 ± 5.3% vs. 27.8 ± 6.6%, P < 0.05), which were associated with preserved left-ventricular systolic function, a less reduction in neuron density, and a significant reduction in CSPG and CD68 expression in the myocardium. RIPerc presented a positive effect on cardiac sympathetic-nerve innervation following ischemia, but showed no significant effect on myocardial metabolism.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Fluorodeoxyglucose F18 , Male , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Rats , Rats, Sprague-Dawley
8.
Eur J Nucl Med Mol Imaging ; 48(5): 1650-1657, 2021 05.
Article in English | MEDLINE | ID: mdl-33128131

ABSTRACT

BACKGROUND AND AIMS: [177Lu]Lu-PSMA-617 radioligand therapy (PSMA-RLT) is a new therapy for patients with metastatic castration-resistant prostate cancer (mCRPC). However, identification of reliable prognostic factors is hampered by heterogeneous treatment regimens applied in previous studies. Hence, we sought clinical factors able to predict response and survival to PSMA-RLT in a homogenous group of patients, all receiving 7400 MBq every 4 weeks. PATIENTS AND METHODS: Data of 61 patients (mean age 71.6 ± 6.9 years, median basal PSA 70.7 [range 1.0-4890 µg/L]), pretreated with abiraterone/enzalutamide (75.4%) and docetaxel/cabazitaxel (68.9%), received three cycles of PSMA-RLT (mean 7321 ± 592 MBq) at four weekly intervals and were analyzed retrospectively. General medical conditions and laboratory parameters of every patients were regularly assessed. Response to therapy was based on PSA levels 1 month after the 3rd cycle. Binary logistic regression test and Kaplan-Meier estimates were used to evaluate predictors and overall survival (OS). RESULTS: Forty-nine (80.3%) patients demonstrated a therapy response in terms of any PSA decline, while 21 (19.7%) patients showed increase or no changes in their PSA levels. Baseline hemoglobin (Hb) significantly predicted PSA reductions of ≥ 50% 4 weeks after receiving the 3rd PSMA-RLT (P = 0.01, 95% CI: 1.09-2.09) with an AUC of 0.68 (95% CI: 0.54-0.81). The levels of basal Hb and basal PSA were able to predict survival of patients, both P < 0.05 (relative risk 1.51 and 0.79, 95% CI: 1.09-2.09 and 0.43-1.46), respectively. In comparison to patients with reduced basal Hb, patients with normal basal Hb levels lived significantly longer (median survival not reached vs. 89 weeks, P = 0.016). Also, patients with basal PSA levels ≤ 650 µg/L had a significantly longer survival than patients with basal PSA levels > 650 µg/L (median survival not reached vs. 97 weeks, P = 0.031). Neither pretreatments with abiraterone/enzalutamide or docetaxel/cabazitaxel nor distribution of metastasis affected survival and rate of response to PSMA-RLT. CONCLUSION: Basal Hb level is an independent predictor for therapy response and survival in patients receiving PSMA-RLT every 4 weeks. Both baseline PSA ≤ 650 µg/L and normal Hb levels were associated with longer survival.


Subject(s)
Dipeptides , Heterocyclic Compounds, 1-Ring , Prostatic Neoplasms, Castration-Resistant , Aged , Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Humans , Lutetium , Male , Middle Aged , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radiopharmaceuticals , Retrospective Studies , Treatment Outcome
9.
Cereb Cortex ; 29(1): 372-382, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30357321

ABSTRACT

Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.


Subject(s)
Cerebral Cortex/metabolism , Monoamine Oxidase/metabolism , Positron-Emission Tomography/methods , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Middle Aged , Molecular Imaging/methods , Serotonin/metabolism , Young Adult
10.
J Magn Reson Imaging ; 50(4): 1326-1335, 2019 10.
Article in English | MEDLINE | ID: mdl-30892777

ABSTRACT

BACKGROUND: Sympathetic reinnervation after heart transplantation (HTX) is a known phenomenon, which has an impact on patient heart rate variability and exercise capacity. The impact of reinnervation on myocardial structure has not been evaluated yet. PROPOSE: To evaluate the feasibility of simultaneous imaging of cardiac reinnervation and cardiac structure using a hybrid PET/MRI system. STUDY TYPE: Prospective / pilot study. SUBJECTS: Ten patients, 4-21 years after cardiac transplantation. FIELD STRENGTH/SEQUENCE: 3 T hybrid PET/MRI system. Cine SSFP, T1 mapping (modified Look-Locker inversion recovery sequence) pre/postcontrast as well as dynamic [11 C]meta-hydroxyephedrine ([11 C]mHED) PET. ASSESSMENT: All MRI and PET parameters were evaluated by experienced readers using dedicated postprocessing software packages for cardiac MRI and PET. For all parameters a 16-segment model for the left ventricle was applied. STATISTICAL TESTS: Mann-Whitney U-test; Spearman correlations. RESULTS: Thirty-six of 160 myocardial segments showed evidence of reinnervation by PET. On a segment-based analysis, mean native T1 relaxation times were nonsignificantly altered in segments with evidence of reinnervation (1305 ± 151 msec vs. 1270 ± 112 msec; P = 0.1), whereas mean extracellular volume (ECV) was significantly higher in segments with evidence of reinnervation (35.8 ± 11% vs. 30.9 ± 7%; P = 0.019). There were no significant differences in wall motion (WM) and wall thickening (WT) between segments with or without reinnervation (mean WM: 7.6 ± 4 mm vs. group B: 9.3 ± 7 mm [P = 0.13]; WT: 79 ± 63% vs. 94 ± 74% [P = 0.27]) under resting conditions. DATA CONCLUSION: The assessment of cardiac reinnervation using a hybrid PET/MRI system is feasible. Segments with evidence of reinnervation by PET showed nonsignificantly higher T1 relaxation times and a significantly higher ECV, suggesting a higher percentage of diffuse fibrosis in these segments, without impairment of rest WM and WT. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1326-1335.


Subject(s)
Heart Transplantation , Heart/innervation , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Sympathetic Nervous System/diagnostic imaging , Adult , Feasibility Studies , Female , Heart/diagnostic imaging , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Young Adult
11.
Bioorg Med Chem Lett ; 24(18): 4490-4495, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25127869

ABSTRACT

Since high MAO-B levels are present in early stages of AD, the MAO-B system can be designated as an appropriate and prospective tracer target of molecular imaging biomarkers for the detection of early AD. According to the preceding investigations of Mishra et al. the aim of this work was the development of a compound library of selective and reversible MAO-B inhibitors by performing bioisosteric modifications of the core structure of 3-(anthracen-9-yl)-5-phenyl-4,5-dihydro-1H-pyrazoles. In conclusion, 13 new pyrazoline based derivatives have been prepared, which will serve as precursor substances for future radiolabeling as well as reference compounds for the investigation of increased MAO-B levels in AD.


Subject(s)
Alzheimer Disease/diagnosis , Monoamine Oxidase Inhibitors , Positron-Emission Tomography , Pyrazoles , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Dose-Response Relationship, Drug , Early Diagnosis , Humans , Molecular Structure , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Reference Standards , Structure-Activity Relationship
12.
Eur J Pharm Biopharm ; 203: 114430, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103001

ABSTRACT

The prediction of central nervous system (CNS) active pharmaceuticals and radiopharmaceuticals has experienced a boost by the introduction of computational approaches, like blood-brain barrier (BBB) score or CNS multiparameter optimization values. These rely heavily on calculated pKa values and other physicochemical parameters. Despite the inclusion of various physicochemical parameters in online data banks, pKa values are often missing and published experimental pKa values are limited especially for radiopharmaceuticals. This comparative study investigated the discrepancies between predicted and experimental pKa values and their impact on CNS activity prediction scores. The pKa values of 46 substances, including therapeutic drugs and PET imaging radiopharmaceuticals, were measured by means of potentiometry and spectrophotometry. Experimentally obtained pKa values were compared with in silico predictions (Chemicalize/Marvin). The results demonstrate a considerable discrepancy between experimental and in silico values, with linear regression analysis showing intermediate correlation (R2(Marvin) = 0.88, R2(Chemicalize) = 0.82). This indicates that if one requires an accurate pKa value, it is essential to experimentally assess it. This underscores the importance of experimentally determining pKa values for accurate drug design and optimization. The study's data provide a valuable library of reliable experimental pKa values for therapeutic drugs and radiopharmaceuticals, aiding researchers in the field.


Subject(s)
Blood-Brain Barrier , Positron-Emission Tomography , Radiopharmaceuticals , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/administration & dosage , Blood-Brain Barrier/metabolism , Computer Simulation , Humans , Hydrogen-Ion Concentration
13.
J Nucl Med ; 65(1): 63-70, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38050125

ABSTRACT

Functional imaging with prostate-specific membrane antigen (PSMA) ligands has emerged as the standard imaging method for prostate cancer (PCA). In parallel, the analysis of blood-derived, cell-free DNA (cfDNA) has been shown to be a promising quantitative biomarker of PCA aggressiveness and patient outcome. This study aimed to evaluate the relationship and prognostic value of cfDNA concentrations and the PSMA-positive tumor volume (PSMA-TV) in men with PCA undergoing [68Ga]Ga-PSMA-11 PET/CT imaging. Methods: We recruited 148 men with histologically proven PCA (mean age, 70.7 ± 7.7 y) who underwent [68Ga]Ga-PSMA-11 PET/CT (184.9 ± 18.9 MBq) and blood sampling between March 2019 and August 2021. Among these, 74 (50.0%) had hormone-sensitive PCA and 74 (50.0%) had castration-resistant PCA (CRPC). All patients provided written informed consent before blood sample collection and imaging. The cfDNA was extracted and quantified, and PSMA-expressing tumor lesions were delineated to extract the PSMA-TVs. The Spearman coefficient assessed correlations between PSMA-TV and cfDNA concentrations and cfDNA's relation with clinical parameters. The Kruskal-Wallis test examined the mean cfDNA concentration differences based on PSMA-TV quartiles for significantly correlated patient groups. Log-rank and multivariate Cox regression analyses evaluated the prognostic significance of high and low cfDNA and PSMA-TV levels for overall survival. Results: Weak positive correlations were found between cfDNA concentration and PSMA-TV in the overall group (r = 0.16, P = 0.049) and the CRPC group (r = 0.31, P = 0.007) but not in hormone-sensitive PCA patients (r = -0.024, P = 0.837). In the CRPC cohort, cfDNA concentrations significantly differed between PSMA-TV quartiles 4 and 1 (P = 0.002) and between quartiles 4 and 2 (P = 0.016). Survival outcomes were associated with PSMA-TV (P < 0.0001, P = 0.004) but not cfDNA (P = 0.174, P = 0.12), as per the log-rank and Cox regression analysis. Conclusion: These findings suggest that cfDNA might serve as a biomarker of advanced, aggressive CRPC but does not reliably reflect total tumor burden or prognosis. In comparison, [68Ga]Ga-PSMA-11 PET/CT provides a highly granular and prognostic assessment of tumor burden across the spectrum of PCA disease progression.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Middle Aged , Aged , Gallium Radioisotopes , Positron Emission Tomography Computed Tomography/methods , Prognosis , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Retrospective Studies , Tumor Burden , Prospective Studies , Gallium Isotopes , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Biomarkers , Hormones , Edetic Acid
14.
J Med Chem ; 67(5): 4036-4062, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38442487

ABSTRACT

A substantial portion of patients do not benefit from programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) checkpoint inhibition therapies, necessitating a deeper understanding of predictive biomarkers. Immunohistochemistry (IHC) has played a pivotal role in assessing PD-L1 expression, but small-molecule positron emission tomography (PET) tracers could offer a promising avenue to address IHC-associated limitations, i.e., invasiveness and PD-L1 expression heterogeneity. PET tracers would allow for improved quantification of PD-L1 through noninvasive whole-body imaging, thereby enhancing patient stratification. Here, a large series of PD-L1 targeting small molecules were synthesized, leveraging advantageous substructures to achieve exceptionally low nanomolar affinities. Compound 5c emerged as a promising candidate (IC50 = 10.2 nM) and underwent successful carbon-11 radiolabeling. However, a lack of in vivo tracer uptake in xenografts and notable accumulation in excretory organs was observed, underscoring the challenges encountered in small-molecule PD-L1 PET tracer development. The findings, including structure-activity relationships and in vivo biodistribution data, stand to illuminate the path forward for refining small-molecule PD-L1 PET tracers.


Subject(s)
B7-H1 Antigen , Positron-Emission Tomography , Humans , B7-H1 Antigen/metabolism , Ligands , Tissue Distribution , Positron-Emission Tomography/methods , Immunohistochemistry
15.
Cancers (Basel) ; 16(19)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39409971

ABSTRACT

Background/Objectives: Cancer-associated cachexia in head and neck squamous cell carcinoma (HNSCC) is challenging to diagnose due to its complex pathophysiology. This study aimed to identify metabolic biomarkers linked to cachexia and survival in HNSCC patients using [18F]FDG-PET/CT imaging and machine learning (ML) techniques. Methods: We retrospectively analyzed 253 HNSCC patients from Vienna General Hospital and the MD Anderson Cancer Center. Automated organ segmentation was employed to quantify metabolic and volumetric data from [18F]FDG-PET/CT scans across 29 tissues and organs. Patients were categorized into low weight loss (LoWL; grades 0-2) and high weight loss (HiWL; grades 3-4) groups, according to the weight loss grading system (WLGS). Machine learning models, combined with Cox regression, were used to identify survival predictors. Shapley additive explanation (SHAP) analysis was conducted to determine the significance of individual features. Results: The HiWL group exhibited increased glucose metabolism in skeletal muscle and adipose tissue (p = 0.01), while the LoWL group showed higher lung metabolism. The one-year survival rate was 84.1% in the LoWL group compared to 69.2% in the HiWL group (p < 0.01). Pancreatic volume emerged as a key biomarker associated with cachexia, with the ML model achieving an AUC of 0.79 (95% CI: 0.77-0.80) and an accuracy of 0.82 (95% CI: 0.81-0.83). Multivariate Cox regression confirmed pancreatic volume as an independent prognostic factor (HR: 0.66, 95% CI: 0.46-0.95; p < 0.05). Conclusions: The integration of metabolic and volumetric data provided a strong predictive model, highlighting pancreatic volume as a key imaging biomarker in the metabolic assessment of cachexia in HNSCC. This finding enhances our understanding and may improve prognostic evaluations and therapeutic strategies.

16.
Bioorg Med Chem ; 21(24): 7562-9, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24262882

ABSTRACT

INTRODUCTION: Present data indicate that merging beneficial structural elements from previously published DAT-ligands highest DAT affinity, selectivity and a suitable metabolic profile should be achieved. This combination led to the development of IPCIT and FE@IPCIT. METHODS: Precursor synthesis was done starting from cocaine in a six step reaction. O-[(11)C]-methylation was established using [(11)C]methyl iodide, optimized and subsequently automated. Small scale (18)F-fluroroethylation as well as optimization of reaction parameters and automation were performed. Affinity and selectivity of the candidate substances were tested in standard binding experiments on human membranes. Metabolic stability and blood-brain-barrier (BBB) penetration were determined. RESULTS: Precursor compound, IPCITacid, and reference compounds, IPCIT and FE@IPCIT, were obtained in 4.9%, 12.7% and 4.1% yield, respectively. Automated radiosynthesis of [(11)C]IPCIT yielded 1.9 ± 0.7 GBq (12.5 ± 4%, corrected for decay). Optimum parameters for (18)F-fluoroethylation were 110 °C for 15 min under TBAH catalysis, yielding 67 ± 16 % radiochemical incorporation. Affinity was determined as 1.7 ± 0.6 nM for IPCIT, 1.3 ± 0.2 nM for FE@IPCIT and 37 ± 13 nM for the precursor molecule, IPCIT-acid. Results from in vitro and in silico evaluations revealed high stability but also high lipophilicity. CONCLUSION: Present data indicate high affinity and stability of both IPCIT and FE@IPCIT. Radiolabelling, optimization of reaction parameters and automation succeeded. On the other hand, data concerning BBB-penetration are not promising.


Subject(s)
Cocaine/analogs & derivatives , Dopamine Plasma Membrane Transport Proteins/analysis , Positron-Emission Tomography , Carbon Isotopes , Cocaine/chemical synthesis , Cocaine/chemistry , Cocaine/metabolism , Fluorine Radioisotopes , Humans , Molecular Conformation , Radioactive Tracers
17.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513962

ABSTRACT

PD-1/PD-L1 immune checkpoint blockade for cancer therapy showed promising results in clinical studies. Further endeavors are required to enhance patient stratification, as, at present, only a small portion of patients with PD-L1-positive tumors (as determined by PD-L1 targeted immunohistochemistry; IHC) benefit from anti-PD-1/PD-L1 immunotherapy. This can be explained by the heterogeneity of tumor lesions and the intrinsic limitation of multiple biopsies. Consequently, non-invasive in vivo quantification of PD-L1 on tumors and metastases throughout the entire body using positron emission tomography (PET) imaging holds the potential to augment patient stratification. Within the scope of this work, six new small molecules were synthesized by following a ligand-based drug design approach supported by computational docking utilizing lead structures based on the (2-methyl-[1,1'-biphenyl]-3-yl)methanol scaffold and evaluated in vitro for potential future use as PD-L1 PET tracers. The results demonstrated binding affinities in the nanomolar to micromolar range for lead structures and newly prepared molecules, respectively. Carbon-11 labeling was successfully and selectively established and optimized with very good radiochemical conversions of up to 57%. The obtained insights into the significance of polar intermolecular interactions, along with the successful radiosyntheses, could contribute substantially to the future development of small-molecule PD-L1 PET tracers.

18.
iScience ; 26(11): 108137, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867937

ABSTRACT

Studies indicate that the radiotracer 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) can be metabolized beyond 2-[18F]FDG-6-phosphate (2-[18F]FDG-6-P), but its metabolism is incompletely understood. Most importantly, it remains unclear whether downstream metabolism affects tracer accumulation in vivo. Here we present a fingerprint of 2-[18F]FDG radiometabolites over time in cancer cells, corresponding tumor xenografts and murine organs. Strikingly, radiometabolites representing glycogen metabolism or the oxPPP correlated inversely with tracer accumulation across all examined tissues. Recent studies suggest that not only hexokinase, but also hexose-6-phosphate dehydrogenase (H6PD), an enzyme of the oxidative pentose phosphate pathway (oxPPP), determines 2-[18F]FDG accumulation. However, little is known about the corresponding enzyme glucose-6-phosphate dehydrogenase (G6PD). Our mechanistic in vitro experiments on the role of the oxPPP propose that 2-[18F]FDG can be metabolized via both G6PD and H6PD, but data from separate enzyme knockdown suggest diverging roles in downstream tracer metabolism. Overall, we propose that tissue-specific metabolism beyond 2-[18F]FDG-6-P could matter for imaging.

19.
Front Physiol ; 14: 1074052, 2023.
Article in English | MEDLINE | ID: mdl-37035658

ABSTRACT

Introduction: Dynamic positron emission tomography (PET) and the application of kinetic models can provide important quantitative information based on its temporal information. This however requires arterial blood sampling, which can be challenging to acquire. Nowadays, state-of-the-art PET/CT systems offer fully automated, whole-body (WB) kinetic modelling protocols using image-derived input functions (IDIF) to replace arterial blood sampling. Here, we compared the validity of an automatic WB kinetic model protocol to the reference standard arterial input function (AIF) for both clinical and research settings. Methods: Sixteen healthy participants underwent dynamic WB [18F]FDG scans using a continuous bed motion PET/CT system with simultaneous arterial blood sampling. Multiple processing pipelines that included automatic and manually generated IDIFs derived from the aorta and left ventricle, with and without motion correction were compared to the AIF. Subsequently generated quantitative images of glucose metabolism were compared to evaluate performance of the different input functions. Results: We observed moderate to high correlations between IDIFs and the AIF regarding area under the curve (r = 0.49-0.89) as well as for the cerebral metabolic rate of glucose (CMRGlu) (r = 0.68-0.95). Manual placing of IDIFs and motion correction further improved their similarity to the AIF. Discussion: In general, the automatic vendor protocol is a feasible approach for the quantification of CMRGlu for both, clinical and research settings where expertise or time is not available. However, we advise on a rigorous inspection of the placement of the volume of interest, the resulting IDIF, and the quantitative values to ensure valid interpretations. In protocols requiring longer scan times or where cohorts are prone to involuntary movement, manual IDIF definition with additional motion correction is recommended, as this has greater accuracy and reliability.

20.
Transl Psychiatry ; 13(1): 208, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322010

ABSTRACT

Variants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.e. monoamine concentrations) were shown to affect MAO-A levels. We assessed the effect of MAOA (rs1137070, rs2064070, rs6323) and TPH2 (rs1386494, rs4570625) variants associated with risk for depression and related clinical phenomena on global MAO-A distribution volume (VT) using [11C]harmine PET in 51 participants (21 individuals with seasonal affective disorder (SAD) and 30 healthy individuals (HI)). Statistical analyses comprised general linear models with global MAO-A VT as dependent variable, genotype as independent variable and age, sex, group (individuals with SAD, HI) and season as covariates. rs1386494 genotype significantly affected global MAO-A VT after correction for age, group and sex (p < 0.05, corr.), with CC homozygotes showing 26% higher MAO-A levels. The role of rs1386494 on TPH2 function or expression is poorly understood. Our results suggest rs1386494 might have an effect on either, assuming that TPH2 and MAO-A levels are linked by their common product/substrate, 5-HT. Alternatively, rs1386494 might influence MAO-A levels via another mechanism, such as co-inheritance of other genetic variants. Our results provide insight into how genetic variants within serotonin turnover translate to the cerebral serotonin system. Clinicaltrials.gov Identifier: NCT02582398. EUDAMED Number: CIV-AT-13-01-009583.


Subject(s)
Seasonal Affective Disorder , Serotonin , Humans , Brain/diagnostic imaging , Brain/metabolism , Harmine/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Seasonal Affective Disorder/metabolism , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL