Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cell Commun Signal ; 22(1): 118, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347539

ABSTRACT

BACKGROUND: Disruption of Ca2+ homeostasis after calcium electroporation (CaEP) in tumors has been shown to elicit an enhanced antitumor effect with varying impacts on healthy tissue, such as endothelium. Therefore, our study aimed to determine differences in Ca2+ kinetics and gene expression involved in the regulation of Ca2+ signaling and homeostasis, as well as effects of CaEP on cytoskeleton and adherens junctions of the established endothelial cell lines EA.hy926 and HMEC-1. METHODS: CaEP was performed on EA.hy926 and HMEC-1 cells with increasing Ca2+ concentrations. Viability after CaEP was assessed using Presto Blue, while the effect on cytoskeleton and adherens junctions was evaluated via immunofluorescence staining (F-actin, α-tubulin, VE-cadherin). Differences in intracellular Ca2+ regulation ([Ca2+]i) were determined with spectrofluorometric measurements using Fura-2-AM, exposing cells to DPBS, ionomycin, thapsigargin, ATP, bradykinin, angiotensin II, acetylcholine, LaCl3, and GdCl3. Molecular distinctions were identified by analyzing differentially expressed genes and pathways related to the cytoskeleton and Ca2+ signaling through RNA sequencing. RESULTS: EA.hy926 cells, at increasing Ca2+ concentrations, displayed higher CaEP susceptibility and lower survival than HMEC-1. Immunofluorescence confirmed CaEP-induced, time- and Ca2+-dependent morphological changes in EA.hy926's actin filaments, microtubules, and cell-cell junctions. Spectrofluorometric Ca2+ kinetics showed higher amplitudes in Ca2+ responses in EA.hy926 exposed to buffer, G protein coupled receptor agonists, bradykinin, and angiotensin II compared to HMEC-1. HMEC-1 exhibited significantly higher [Ca2+]i changes after ionomycin exposure, while responses to thapsigargin, ATP, and acetylcholine were similar in both cell lines. ATP without extracellular Ca2+ ions induced a significantly higher [Ca2+]i rise in EA.hy926, suggesting purinergic ionotropic P2X and metabotropic P2Y receptor activation. RNA-sequencing analysis showed significant differences in cytoskeleton- and Ca2+-related gene expression, highlighting upregulation of ORAI2, TRPC1, TRPM2, CNGA3, TRPM6, and downregulation of TRPV4 and TRPC4 in EA.hy926 versus HMEC-1. Moreover, KEGG analysis showed upregulated Ca2+ import and downregulated export genes in EA.hy926. CONCLUSIONS: Our finding show that significant differences in CaEP response and [Ca2+]i regulation exist between EA.hy926 and HMEC-1, which may be attributed to distinct transcriptomic profiles. EA.hy926, compared to HMEC-1, displayed higher susceptibility and sensitivity to [Ca2+]i changes, which may be linked to overexpression of Ca2+-related genes and an inability to mitigate changes in [Ca2+]i. The study offers a bioinformatic basis for selecting EC models based on research objectives.


Subject(s)
Acetylcholine , Calcium , Calcium/metabolism , Acetylcholine/metabolism , Acetylcholine/pharmacology , Angiotensin II/pharmacology , Bradykinin/pharmacology , Ionomycin/metabolism , Ionomycin/pharmacology , Thapsigargin/metabolism , Cell Line , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Gene Expression Profiling , Electroporation , Adenosine Triphosphate/metabolism
2.
Chem Biodivers ; : e202400531, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38948948

ABSTRACT

Current industrial herbicides have a negative impact on the environment and have widespread resistance, so computational studies on their properties, elimination, and overcoming resistance can be helpful. On the other hand, developing new herbicides, especially bioherbicides, is slow and costly. Therefore, computational studies that guide the design and search for new herbicides that exist in various plant sources, can alleviate the pain associated with the many obstacles. This review summarizes for the first time the most recent studies on both aspects of herbicides over 10 years.

3.
Cell Mol Biol Lett ; 28(1): 14, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36810008

ABSTRACT

BACKGROUND: The viral G-protein-coupled receptor (vGPCR) BILF1 encoded by the Epstein-Barr virus (EBV) is an oncogene and immunoevasin and can downregulate MHC-I molecules at the surface of infected cells. MHC-I downregulation, which presumably occurs through co-internalization with EBV-BILF1, is preserved among BILF1 receptors, including the three BILF1 orthologs encoded by porcine lymphotropic herpesviruses (PLHV BILFs). This study aimed to understand the detailed mechanisms of BILF1 receptor constitutive internalization, to explore the translational potential of PLHV BILFs compared with EBV-BILF1. METHODS: A novel real-time fluorescence resonance energy transfer (FRET)-based internalization assay combined with dominant-negative variants of dynamin-1 (Dyn K44A) and the chemical clathrin inhibitor Pitstop2 in HEK-293A cells was used to study the effect of specific endocytic proteins on BILF1 internalization. Bioluminescence resonance energy transfer (BRET)-saturation analysis was used to study BILF1 receptor interaction with ß-arrestin2 and Rab7. In addition, a bioinformatics approach informational spectrum method (ISM) was used to investigate the interaction affinity of BILF1 receptors with ß-arrestin2, AP-2, and caveolin-1. RESULTS: We identified dynamin-dependent, clathrin-mediated constitutive endocytosis for all BILF1 receptors. The observed interaction affinity between BILF1 receptors and caveolin-1 and the decreased internalization in the presence of a dominant-negative variant of caveolin-1 (Cav S80E) indicated the involvement of caveolin-1 in BILF1 trafficking. Furthermore, after BILF1 internalization from the plasma membrane, both the recycling and degradation pathways are proposed for BILF1 receptors. CONCLUSIONS: The similarity in the internalization mechanisms observed for EBV-BILF1 and PLHV1-2 BILF1 provide a foundation for further studies exploring a possible translational potential for PLHVs, as proposed previously, and provides new information about receptor trafficking.


Subject(s)
Endocytosis , Epstein-Barr Virus Infections , Receptors, G-Protein-Coupled , Viral Proteins , Animals , Humans , Caveolin 1/metabolism , Clathrin/metabolism , Herpesvirus 4, Human/metabolism , Receptors, G-Protein-Coupled/metabolism , Swine , Viral Proteins/metabolism
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003531

ABSTRACT

Trefoil factor family protein 3 (Tff3) protects the gastrointestinal mucosa and has a complex mode of action in different tissues. Here, we aimed to determine the effect of Tff3 deficiency on intestinal tissues in a long-term high-fat-diet (HFD)-fed model. A novel congenic strain without additional metabolically relevant mutations (Tff3-/-/C57Bl6NCrl strain, male and female) was used. Wild type (Wt) and Tff3-deficient mice of both sexes were fed a HFD for 36 weeks. Long-term feeding of a HFD induces different effects on the intestinal structure of Tff3-deficient male and female mice. For the first time, we found sex-specific differences in duodenal morphology. HFD feeding reduced microvilli height in Tff3-deficient females compared to that in Wt females, suggesting a possible effect on microvillar actin filament dynamics. These changes could not be attributed to genes involved in ER and oxidative stress, apoptosis, or inflammation. Tff3-deficient males exhibited a reduced cecal crypt depth compared to that of Wt males, but this was not the case in females. Microbiome-related short-chain fatty acid content was not affected by Tff3 deficiency in HFD-fed male or female mice. Sex-related differences due to Tff3 deficiency imply the need to consider both sexes in future studies on the role of Tff in intestinal function.


Subject(s)
Diet, High-Fat , Proteins , Mice , Male , Animals , Female , Diet, High-Fat/adverse effects , Mice, Inbred Strains , Duodenum , Mice, Inbred C57BL , Trefoil Factor-3/genetics
5.
Int J Mol Sci ; 22(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578947

ABSTRACT

Differences in adipose tissue deposition and properties between pig male sex categories, i.e., entire males (EM), immunocastrates (IC) and surgical castrates (SC) are relatively well-characterized, whereas the underlying molecular mechanisms are still not fully understood. To gain knowledge about the genetic regulation of the differences in adipose tissue deposition, two different approaches were used: RNA-sequencing and candidate gene expression by quantitative PCR. A total of 83 differentially expressed genes were identified between EM and IC, 15 between IC and SC and 48 between EM and SC by RNA-sequencing of the subcutaneous adipose tissue. Comparing EM with IC or SC, upregulated genes related to extracellular matrix dynamics and adipogenesis, and downregulated genes involved in the control of lipid and carbohydrate metabolism were detected. Differential gene expression generally indicated high similarity between IC and SC as opposed to EM, except for several heat shock protein genes that were upregulated in EM and IC compared with SC. The candidate gene expression approach showed that genes involved in lipogenesis were downregulated in EM compared with IC pigs, further confirming RNA-sequencing results.


Subject(s)
Adipose Tissue/metabolism , Castration/veterinary , Swine/genetics , Transcriptome , Animals , Castration/methods , Gene Expression , Male , Sequence Analysis, RNA , Swine/surgery
6.
Molecules ; 26(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673080

ABSTRACT

This study investigated the effect of type 1 gonadotropin releasing hormone receptor (GnRH-R) localization within lipid rafts on the properties of plasma membrane (PM) nanodomain structure. Confocal microscopy revealed colocalization of PM-localized GnRH-R with GM1-enriched raft-like PM subdomains. Electron paramagnetic resonance spectroscopy (EPR) of a membrane-partitioned spin probe was then used to study PM fluidity of immortalized pituitary gonadotrope cell line αT3-1 and HEK-293 cells stably expressing GnRH-R and compared it with their corresponding controls (αT4 and HEK-293 cells). Computer-assisted interpretation of EPR spectra revealed three modes of spin probe movement reflecting the properties of three types of PM nanodomains. Domains with an intermediate order parameter (domain 2) were the most affected by the presence of the GnRH-Rs, which increased PM ordering (order parameter (S)) and rotational mobility of PM lipids (decreased rotational correlation time (τc)). Depletion of cholesterol by methyl-ß-cyclodextrin (methyl-ß-CD) inhibited agonist-induced GnRH-R internalization and intracellular Ca2+ activity and resulted in an overall reduction in PM order; an observation further supported by molecular dynamics (MD) simulations of model membrane systems. This study provides evidence that GnRH-R PM localization may be related to a subdomain of lipid rafts that has lower PM ordering, suggesting lateral heterogeneity within lipid raft domains.


Subject(s)
Membrane Lipids/chemistry , Membrane Microdomains/chemistry , Receptors, LHRH/chemistry , Cholesterol/chemistry , Cholesterol/genetics , Electron Spin Resonance Spectroscopy , HEK293 Cells , Humans , Membrane Lipids/genetics , Membrane Microdomains/genetics , Membrane Microdomains/ultrastructure , Protein Domains/genetics , Receptors, LHRH/genetics , Receptors, LHRH/therapeutic use , Receptors, LHRH/ultrastructure , Signal Transduction/genetics
7.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287269

ABSTRACT

Endocytosis is a fundamental process involved in trafficking of various extracellular and transmembrane molecules from the cell surface to its interior. This enables cells to communicate and respond to external environments, maintain cellular homeostasis, and transduce signals. G protein-coupled receptors (GPCRs) constitute a family of receptors with seven transmembrane alpha-helical domains (7TM receptors) expressed at the cell surface, where they regulate physiological and pathological cellular processes. Several herpesviruses encode receptors (vGPCRs) which benefits the virus by avoiding host immune surveillance, supporting viral dissemination, and thereby establishing widespread and lifelong infection, processes where receptor signaling and/or endocytosis seem central. vGPCRs are rising as potential drug targets as exemplified by the cytomegalovirus-encoded receptor US28, where its constitutive internalization has been exploited for selective drug delivery in virus infected cells. Therefore, studying GPCR trafficking is of great importance. This review provides an overview of the current knowledge of endocytic and cell localization properties of vGPCRs and methodological approaches used for studying receptor internalization. Using such novel approaches, we show constitutive internalization of the BILF1 receptor from human and porcine γ-1 herpesviruses and present motifs from the eukaryotic linear motif (ELM) resources with importance for vGPCR endocytosis.


Subject(s)
Endocytosis/physiology , Herpesviridae/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , Cell Membrane/metabolism , Cytomegalovirus/metabolism , Humans , Receptors, Chemokine/metabolism , Viral Proteins/metabolism
8.
Ecotoxicol Environ Saf ; 180: 106-113, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31078017

ABSTRACT

Exposure to polychlorinated biphenyls (PCBs), which are persistent lipophilic environmental pollutants, has a variety of adverse effects on wildlife and human health, including bone mineralization, growth and mechanical strength. The present study evaluated the effects of lactational exposure to nondioxin-like PCB-155 and dioxin-like PCB-169, individually and in combination, on pubertal rat femur development and its biomechanics. After offspring delivery, Wistar rat mothers were divided into four groups, i.e., PCB-169, PCB-155, PCB-155+169 and control, and were administered PCBs intraperitoneally. Data on bone geometry, biomechanics and mineral composition were obtained by analysis of femurs from 42-day-old offspring by microCT scanning, three-point bending test and inductively coupled plasma mass spectrometry. Decreased somatic mass and femur size, i.e., mass, periosteal circumference and cross sectional area, were observed in the PCB-169 and PCB-155 groups. Additionally, lactational exposure to planar PCB-169 resulted in harder and more brittle bones containing higher amounts of minerals. Combined exposure to structurally and functionally different PCBs demonstrated only mild alterations in bone width and mineralization. To conclude, our results demonstrated that alterations, observed on postnatal day 42, were primarily induced by PCB-169, while toxicity from both of the individual congeners may have been reduced in the combined group.


Subject(s)
Environmental Pollutants/toxicity , Femur/drug effects , Maternal Exposure/adverse effects , Polychlorinated Biphenyls/toxicity , Animals , Dietary Exposure/adverse effects , Female , Femur/chemistry , Femur/growth & development , Male , Minerals/analysis , Rats, Wistar
9.
BMC Oral Health ; 19(1): 49, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30902077

ABSTRACT

BACKGROUND: Molar-root incisor malformation (MRIM) is a novel dental phenotype likely related to a patient's past medical history. This case aimed to confirm MRIM by histological and scanning electron microscopy (SEM) examination for the first time in a patient diagnosed with autoimmune lymphoproliferative syndrome (ALPS) and to propose a possible link between ALPS and MRIM that could be attributable to abnormally proliferated bone marrow. CASE PRESENTATION: A 12.5-year-old boy with an extensive medical history, including diagnosis of ALPS, was examined clinically and radiologically to elucidate the reason for pain primarily originating from the area of the lower left permanent first molar tooth (PFM; tooth 36). Dental examination and radiographic survey revealed abnormal pulp cavity morphology of all four PFMs, and these were extracted, resolving the dental pain in the patient. The extracted PFMs were subjected to light microscopy, SEM evaluation and mineral density and elemental composition analyses. Histology of two PFMs revealed the presence of dentin-, bone- and cartilage-like tissues with abundant blood vessels occupying the majority of the pulp chamber. The root canals were obliterated with mineralized structures resembling pulp stones. Two different, highly mineralized abnormal tissues filling the majority of the pulp chamber revealed by SEM and confirming the diagnosis of MRIM displayed a mineral density and elemental composition similar to those of enamel and dentin, respectively. CONCLUSIONS: It appears likely that in addition to the complex medical history during early childhood in the present case, extensive lymphoid infiltrates that are possible in ALPS patients can be regarded as a cofactor in the development of MRIM by exerting considerable pressure on the developing tooth bud and providing cells capable of differentiating into diverse cell types.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Incisor , Child , Dental Pulp Cavity , Humans , Male , Molar , Tooth Root
10.
Histochem Cell Biol ; 150(1): 93-102, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29687242

ABSTRACT

Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.


Subject(s)
Automation , Fungal Proteins/pharmacology , Hemolysin Proteins/pharmacology , Neurons/cytology , Neurons/drug effects , Animals , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Hemolysin Proteins/chemistry , Hemolysin Proteins/isolation & purification , Mice , Microscopy, Confocal , Rats , Tumor Cells, Cultured
11.
Horm Behav ; 97: 94-101, 2018 01.
Article in English | MEDLINE | ID: mdl-29080672

ABSTRACT

Female sexual behavior is a complex process regulated by multiple brain circuits and influenced by sex steroid hormones acting in the brain. Several regions in the hypothalamus have been implicated in the regulation of female sexual behavior although a complete circuitry involved in female sexual behavior is not understood. Fez family zinc finger 1 (Fezf1) gene is a brain specific gene that has been mostly studied in the context of olfactory development, although in a recent study, FEZF1 has been identified as one of the genes responsible for the development of Kallman syndrome. In the present study, we utilized shRNA approach to downregulate Fezf1 in the ventromedial nucleus of the hypothalamus (VMN) with the aim to explore the role of this gene. Adult female mice were stereotaxically injected with lentiviral vectors encoding shRNA against Fezf1 gene. Mice injected with shRNA against Fezf1 had significantly reduced female sexual behavior, presumably due to the downregulation of estrogen receptor alpha (ERα), as the number of ERα-immunoreactive cells in the VMN of Fezf1 mice was significantly lower in comparison to controls. However, no effect on body weight or physical activity was observed in mice with downregulated Fezf1, suggesting that the role of Fezf1 in the VMN is limited to the regulation of sexual behavior. SIGNIFICANCE STATEMENT: Fezf1 gene has been identified in the present study as a regulator of female sexual behavior in mice. Regulation of the female sexual behavior could be through the regulation of estrogen receptor alpha expression in the ventromedial nucleus of the hypothalamus, as the expression of this receptor was reduced in mice with downregulated Fezf1. As expression of Fezf1 is very specific in the brain, this gene could present a potential target for the development of novel drugs regulating hypoactive sexual desire disorder in women, if similar function of FEZF1 will be confirmed in humans.


Subject(s)
DNA-Binding Proteins/metabolism , Estrogen Receptor alpha/metabolism , Nerve Tissue Proteins/metabolism , Sexual Behavior, Animal/physiology , Ventromedial Hypothalamic Nucleus/metabolism , Animals , DNA-Binding Proteins/genetics , Down-Regulation , Estrogen Receptor alpha/genetics , Female , Mice , Nerve Tissue Proteins/genetics , RNA, Small Interfering , Repressor Proteins
13.
Environ Toxicol ; 32(4): 1135-1146, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27393578

ABSTRACT

Exposure to widespread lipophilic and bioaccumulative polychlorinated biphenyls (PCBs) induces diverse biochemical and toxicological responses in various organs, including the bone. The aim of this study was to evaluate the changes in growth rate, geometry, serum, and bone biochemical parameters and biomechanics of juvenile rat femur induced by lactational exposure to nonplanar PCB-155 and planar PCB-169 individually and in combination. Fifteen lactating Wistar rats were divided into four groups (PCB-169, PCB-155, PCB-155+169, and control), and PCBs were administered intraperitoneally at different time points after delivery. Femurs from 22-day-old offspring were analyzed by microCT, three-point bending test and inductively coupled plasma-mass spectrometry (ICP-MS) to obtain data on bone geometry, biomechanics and mineral composition. The serum levels of calcium, phosphate and alkaline phosphatase were also determined. Lactational exposure to planar PCB-169 resulted in shorter and thinner femurs, reduced endosteal and periosteal perimeters, smaller total cross-sectional and medullary areas, and lowered serum bone marker levels and calcium levels in the bone, while femur mechanical properties were not significantly altered. The changes observed in the combination exposure (PCB-155+169) group were similar to those observed in the PCB-169 group but were less pronounced. In summary, our results demonstrate that alterations in lactationally exposed offspring were primarily induced by planar PCB-169. The milder outcome in the combined group suggested that the PCB-169-mediated toxic effects on the bone might be reduced by a nonplanar PCB-155 congener. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1135-1146, 2017.


Subject(s)
Environmental Pollutants/toxicity , Femur/pathology , Polychlorinated Biphenyls/toxicity , Animals , Biomechanical Phenomena , Female , Femur/drug effects , Femur/metabolism , Femur/physiopathology , Humans , Lactation , Male , Rats , Rats, Wistar , Stereoisomerism
14.
Int J Mol Sci ; 17(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27447620

ABSTRACT

This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET²) ß-arrestin 2 (ßarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced ßarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.


Subject(s)
Arginine/chemistry , Arginine/metabolism , Dopamine/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Amino Acid Sequence , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Protein Isoforms , Radioligand Assay , Sequence Homology, Amino Acid , Signal Transduction
15.
Mol Cell Biochem ; 397(1-2): 285-93, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25148873

ABSTRACT

Protein kinase CK2 is a ubiquitous pro-survival kinase whose substrate targets are involved in various cellular processes. Crystal structure analysis confirmed constitutive activity of the kinase, yet CK2 activity regulation in the cell is still obscure. In-vitro studies suggest autoinhibitory aggregation of the hetero-tetrameric CK2 holoenzyme as a basis for CK2 regulation. In this study, we applied bioluminescent resonance energy transfer (BRET) technology to investigate CK2 holoenzyme aggregation in living cells. We designed a BRET(2) pair consisting of the fusion proteins CK2α-Rluc8 and CK2α-GFP(2). This BRET(2) sensor reported specific interaction of CK2 holoenzyme complexes. Furthermore, the BRET(2) sensor was applied to study modulators of CK2 aggregation. We found that CK2 aggregation is not static and can be influenced by the CK2-binding protein alpha subunit of the heterotrimeric G-protein that stimulates adenylyl cyclase (Gαs) and the polycationic compound polylysine. Gαs, but not the CK2 substrate ß-arrestin2, decreased the BRET(2) signal by up to 50%. Likewise polylysine, but not the CK2 inhibitor DRB, decreased the signal in a dose-dependent manner up to 50%. For the first time, we present direct experimental evidence for CK2 holoenzyme aggregates in the cell. Our data suggest that CK2 activity may be controlled by holoenzyme aggregation, to our knowledge a novel mechanism for protein kinase regulation. Moreover, the BRET(2) sensor used in our study is a novel tool for studying CK2 regulation by aggregation and pharmacological screening for novel allosteric CK2 effectors.


Subject(s)
Casein Kinase II/chemistry , Protein Aggregates , Animals , Arrestins/chemistry , Arrestins/genetics , Arrestins/metabolism , COS Cells , Casein Kinase II/genetics , Casein Kinase II/metabolism , Chlorocebus aethiops , Fluorescence Resonance Energy Transfer , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Humans , beta-Arrestins
16.
Biomolecules ; 14(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38672440

ABSTRACT

This study assessed the suitability of the complementarity-determining region 2 (CDR2) of the nanobody (Nb) as a template for the derivation of nanobody-derived peptides (NDPs) targeting active-state ß2-adrenergic receptor (ß2AR) conformation. Sequences of conformationally selective Nbs favoring the agonist-occupied ß2AR were initially analyzed by the informational spectrum method (ISM). The derived NDPs in complex with ß2AR were subjected to protein-peptide docking, molecular dynamics (MD) simulations, and metadynamics-based free-energy binding calculations. Computational analyses identified a 25-amino-acid-long CDR2-NDP of Nb71, designated P4, which exhibited the following binding free-energy for the formation of the ß2AR:P4 complex (ΔG = -6.8 ± 0.8 kcal/mol or a Ki = 16.5 µM at 310 K) and mapped the ß2AR:P4 amino acid interaction network. In vitro characterization showed that P4 (i) can cross the plasma membrane, (ii) reduces the maximum isoproterenol-induced cAMP level by approximately 40% and the isoproterenol potency by up to 20-fold at micromolar concentration, (iii) has a very low affinity to interact with unstimulated ß2AR in the cAMP assay, and (iv) cannot reduce the efficacy and potency of the isoproterenol-mediated ß2AR/ß-arrestin-2 interaction in the BRET2-based recruitment assay. In summary, the CDR2-NDP, P4, binds preferentially to agonist-activated ß2AR and disrupts Gαs-mediated signaling.


Subject(s)
Peptides , Receptors, Adrenergic, beta-2 , Single-Domain Antibodies , Humans , Amino Acid Sequence , Complementarity Determining Regions/chemistry , Cyclic AMP/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Protein Binding , Protein Conformation , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/metabolism
17.
Animals (Basel) ; 13(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370552

ABSTRACT

Immunocastration and rearing of entire males (EMs) are sustainable alternatives to surgical castration. However, these animal carcasses have variable risk of boar taint and should be identified at the slaughter line. We aimed to identify a simple and reliable indicator of androstenone-related boar taint by evaluating pelvic urogenital tract weight as a marker of boar-taint animals at the slaughter line. The pelvic urogenital tract, testes, and accessory sex glands of EMs and immunocastrates (ICs) were collected, dissected, and weighed, before colorimetric measurements of testicular tissue. Additionally, GnRH antibody titers and testosterone, androstenone, and skatole levels were determined. Our results showed that 81.8% of EMs had androstenone levels above the risk threshold (>0.5 µg/g fat; EM/Ahigh subgroup), whereas in ICs, the C/Ahigh subgroup with androstenone >0.5 µg/g fat accounted for only 4.3%. Androstenone levels correlated negatively with GnRH antibody titers and positively with testosterone levels and reproductive organ weights. Identification of ICs with androstenone levels above the threshold (IC/Ahigh subgroup) may be achieved via testes or pelvic urogenital tract weight measurements. However, in EMs, the latter is a more reliable parameter. A principal component analysis based on these variables and hierarchical clustering also distinguished the Ahigh from the Alow subgroup, irrespective of IC/EM. The findings highlight the possible use of pelvic urogenital tract weight along with testes weight as a simple, reliable, and efficient morphometric indicator for identifying androstenone-positive carcasses of different sex categories.

18.
Andrology ; 10(6): 1217-1232, 2022 09.
Article in English | MEDLINE | ID: mdl-35752946

ABSTRACT

BACKGROUND: While immunocastration has been studied in male pre-pubertal pigs, data on older, sexually mature animals are limited. To understand the physiological effects of androgen deprivation in the late sexual development phase, we compared mature immunocastrated boars (n = 19; average age = 480 days) to young male immunocastrated pigs (n = 6; average age = 183 days) and young entire males (n = 6; average age = 186 days) as positive and negative controls, respectively. OBJECTIVES: We hypothesized that the timing of gonadotropin-releasing hormone suppression (early or late sexual development phases) influences the extent of reproductive function inhibition, histological structure of testicular tissue, and expression levels of selected genes related to steroid metabolism. MATERIALS AND METHODS: Antibody titer, hormonal status, and histomorphometric analysis of testicular tissue were subjected to principal component analysis followed by hierarchical clustering to evaluate the immunocastration effectiveness in mature boars. RESULTS: Hierarchical clustering differentiated mature immunocastrated boars clustered with young immunocastrated pigs from those clustered with entire males. Although all mature immunocastrated boars responded to vaccination, as evidenced by the increased gonadotropin-releasing hormone antibody titers (p < 0.001), decreased serum luteinizing hormone concentrations (p = 0.002), and changes in testicular tissue vascularization (lighter and less red testicular parenchyma; p ≤ 0.001), the responses were variable. Sharp decreases in testes index (p < 0.001), Leydig cell volume density (p < 0.001), Leydig cell nucleus-to-cytoplasm ratio (p < 0.001), and testosterone concentration (p < 0.001) were observed in mature immunocastrated boars clustered with young immunocastrated pigs compared with those that clustered with entire males. Additionally, mature immunocastrated boars clustered with young immunocastrated pigs showed lower hydroxysteroid 17-beta dehydrogenase 7 expression than entire males (p < 0.05). The young immunocastrated pigs group showed higher follicle-stimulating hormone receptors than the entire males and mature immunocastrated boars, lower steroidogenic acute regulatory protein expression levels compared with entire males, and mature immunocastrated boars clustered with entire males (p < 0.01). CONCLUSION: The two-dose vaccination regime resulted in progressive but variable regression of testicular function in adult (post-pubertal) pigs; however, it was insufficient to induce a complete immunocastration response in all animals.


Subject(s)
Hypogonadism , Prostatic Neoplasms , Androgen Antagonists , Animals , Gonadotropin-Releasing Hormone , Humans , Hypogonadism/metabolism , Male , Prostatic Neoplasms/metabolism , Swine , Testis/metabolism , Testosterone
19.
Life (Basel) ; 12(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36013467

ABSTRACT

Trefoil factor 3 (Tff3) protein is a small secretory protein expressed on various mucosal surfaces and is involved in proper mucosal function and recovery via various mechanisms, including immune response. However, Tff3 is also found in the bloodstream and in various other tissues, including the liver. Its complete attenuation was observed as the most prominent event in the early phase of diabetes in the polygenic Tally Ho mouse model of diabesity. Since then, its role in metabolic processes has emerged. To elucidate the complex role of Tff3, we used a new Tff3-deficient mouse model without additional metabolically relevant mutations (Tff3-/-/C57BL/6NCrl) and exposed it to a high-fat diet (HFD) for a prolonged period (8 months). The effect was observed in male and female mice compared to wild-type (WT) counter groups (n = 10 animals per group). We monitored the animals' general metabolic parameters, liver morphology, ultrastructure and molecular genes in relevant lipid and inflammatory pathways. Tff3-deficient male mice had reduced body weight and better glucose utilization after 17 weeks of HFD, but longer HFD exposure (32 weeks) resulted in no such change. We found a strong reduction in lipid accumulation in male Tff3-/-/C57BL/6NCrl mice and a less prominent reduction in female mice. This was associated with downregulated peroxisome proliferator-activated receptor gamma (Pparγ) and upregulated interleukin-6 (Il-6) gene expression, although protein level difference did not reach statistical significance due to higher individual variations. Tff3-/-/C57Bl6N mice of both sex had reduced liver steatosis, without major fatty acid content perturbations. Our research shows that Tff3 protein is clearly involved in complex metabolic pathways. Tff3 deficiency in C57Bl6N genetic background caused reduced lipid accumulation in the liver; further research is needed to elucidate its precise role in metabolism-related events.

20.
Animals (Basel) ; 12(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077899

ABSTRACT

Bisphenol A (BPA) is a well-known synthetic compound that belongs to the group of endocrine-disrupting chemicals. Although bone tissue is a target for these compounds, studies on BPA-related effects on bone morphology in farm animals are limited. In this preliminary study, we investigated the effects of short-term dietary BPA exposure on femoral morphology, metabolism, mineral content, and biomechanical behavior in rams aged 9-12 months. Fourteen rams of the Istrian Pramenka breed were randomly divided into a BPA group and a control group (seven rams/group) and exposed to 25 µg BPA/kg bw for 64 days in feed. Blood was collected for determination of bone turnover markers (procollagen N-terminal propeptide, C-terminal telopeptide), and femurs were assessed via computed tomography, histomorphometry, three-point bending test, and mineral analysis. BPA had no significant effects on most of the parameters studied. Only mineral analysis showed decreased manganese (50%; p ≤ 0.05) and increased copper content (25%; p ≤ 0.05) in the femurs of BPA-exposed rams. These results suggest that a 2-month, low-dose exposure to BPA in growing rams did not affect the histomorphology, metabolism, and biomechanical behavior of femurs; however, it affected the composition of microelements, which could affect the histometric and biophysical properties of bone in the long term.

SELECTION OF CITATIONS
SEARCH DETAIL