Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806372

ABSTRACT

Some life-threatening acute hepatitis originates from drug-induced liver injury (DILI). Carbon tetrachloride (CCl4)-induced acute liver injury in mice is the widely used model of choice to study acute DILI, which pathogenesis involves a complex interplay of oxidative stress, necrosis, and apoptosis. Since the receptor interacting protein kinase-1 (RIPK1) is able to direct cell fate towards survival or death, it may potentially affect the pathological process of xenobiotic-induced liver damage. Two different mouse lines, either deficient for Ripk1 specifically in liver parenchymal cells (Ripk1LPC-KO) or for the kinase activity of RIPK1 (Ripk1K45A, kinase dead), plus their respective wild-type littermates (Ripk1fl/fl, Ripk1wt/wt), were exposed to single toxic doses of CCl4. This exposure led in similar injury in Ripk1K45A mice and their littermate controls. However, Ripk1LPC-KO mice developed more severe symptoms with massive hepatocyte apoptosis as compared to their littermate controls. A pretreatment with a TNF-α receptor decoy exacerbated liver apoptosis in both Ripk1fl/fl and Ripk1LPC-KO mice. Besides, a FasL antagonist promoted hepatocyte apoptosis in Ripk1fl/fl mice but reduced it in Ripk1LPC-KO mice. Thus, the scaffolding properties of RIPK1 protect hepatocytes from apoptosis during CCl4 intoxication. TNF-α and FasL emerged as factors promoting hepatocyte survival. These protective effects appeared to be independent of RIPK1, at least in part, for TNF-α, but dependent on RIPK1 for FasL. These new data complete the deciphering of the molecular mechanisms involved in DILI in the context of research on their prevention or cure.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Hepatitis , Animals , Apoptosis , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Hepatitis/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
EMBO Rep ; 19(2): 234-243, 2018 02.
Article in English | MEDLINE | ID: mdl-29233828

ABSTRACT

E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.


Subject(s)
Cell Death , E2F1 Transcription Factor/metabolism , bcl-X Protein/metabolism , Apoptosis , Cell Line, Tumor , E2F1 Transcription Factor/chemistry , Extracellular Space/metabolism , Gene Expression Regulation/drug effects , Humans , Mitochondria/metabolism , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription, Genetic , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/chemistry
3.
Nat Commun ; 11(1): 259, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937780

ABSTRACT

A fascinating but uncharacterized action of antimitotic chemotherapy is to collectively prime cancer cells to apoptotic mitochondrial outer membrane permeabilization (MOMP), while impacting only on cycling cell subsets. Here, we show that a proapoptotic secretory phenotype is induced by activation of cGAS/STING in cancer cells that are hit by antimitotic treatment, accumulate micronuclei and maintain mitochondrial integrity despite intrinsic apoptotic pressure. Organotypic cultures of primary human breast tumors and patient-derived xenografts sensitive to paclitaxel exhibit gene expression signatures typical of type I IFN and TNFα exposure. These cytokines induced by cGAS/STING activation trigger NOXA expression in neighboring cells and render them acutely sensitive to BCL-xL inhibition. cGAS/STING-dependent apoptotic effects are required for paclitaxel response in vivo, and they are amplified by sequential, but not synchronous, administration of BH3 mimetics. Thus anti-mitotic agents propagate apoptotic priming across heterogeneously sensitive cancer cells through cytosolic DNA sensing pathway-dependent extracellular signals, exploitable by delayed MOMP targeting.


Subject(s)
Antimitotic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Membrane Proteins/metabolism , Paracrine Communication/drug effects , Animals , Breast Neoplasms/metabolism , Cell Line , Female , Gene Knockout Techniques , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Membrane Proteins/genetics , Mice , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Paclitaxel/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism
4.
PLoS One ; 13(10): e0206253, 2018.
Article in English | MEDLINE | ID: mdl-30359437

ABSTRACT

The cellular inhibitor of apoptosis 1 (cIAP1) is an E3-ubiquitin ligase that regulates cell signaling pathways involved in fundamental cellular processes including cell death, cell proliferation, cell differentiation and inflammation. It recruits ubiquitination substrates thanks to the presence of three baculoviral IAP repeat (BIR) domains at its N-terminal extremity. We previously demonstrated that cIAP1 promoted the ubiquitination of the E2 factor 1 (E2F1) transcription factor. Moreover, we showed that cIAP1 was required for E2F1 stabilization during the S phase of cell cycle and in response to DNA damage. Here, we report that E2F1 binds within the cIAP1 BIR3 domain. The BIR3 contains a surface hydrophobic groove that specifically anchors a conserved IAP binding motif (IBM) found in a number of intracellular proteins including Smac. The Smac N-7 peptide that includes the IBM, as well as a Smac mimetic, competed with E2F1 for interaction with cIAP1 demonstrating the importance of the BIR surface hydrophobic groove. We demonstrated that the first alpha-helix of BIR3 was required for E2F1 binding, as well as for the binding of Smac and Smac mimetics. Overexpression of cIAP1 modified the ubiquitination profile of E2F1, increasing the ratio of E2F1 conjugated with K11- and K63-linked ubiquitin chains, and decreasing the proportion of E2F1 modified by K48-linked ubiquitin chains. ChIP-seq analysis demonstrated that cIAP1 was required for the recruitment of E2F1 onto chromatin. Lastly, we identified an E2F-binding site on the cIAP1-encoding birc2 gene promoter, suggesting a retro-control regulation loop.


Subject(s)
Chromatin/metabolism , E2F1 Transcription Factor/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Binding Sites , Cell Communication/genetics , Cell Line , E2F1 Transcription Factor/chemistry , HeLa Cells , Humans , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/genetics , Protein Binding , Protein Domains , Signal Transduction , Ubiquitination
5.
Cell Rep ; 17(12): 3347-3358, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28009301

ABSTRACT

Anti-apoptotic BCL-2 family members bind to BH3-only proteins and multidomain BAX/BAK to preserve mitochondrial integrity and maintain survival. Whereas inhibition of these interactions is the biological basis of BH3-mimetic anti-cancer therapy, the actual response of membrane-bound protein complexes to these compounds is currently ill-defined. Here, we find that treatment with BH3 mimetics targeting BCL-xL spares subsets of cells with the highest levels of this protein. In intact cells, sequestration of some pro-apoptotic activators (including PUMA and BIM) by full-length BCL-xL is much more resistant to derepression than previously described in cell-free systems. Alterations in the BCL-xL C-terminal anchor that impacts subcellular membrane-targeting and localization dynamics restore sensitivity. Thus, the membrane localization of BCL-xL enforces its control over cell survival and, importantly, limits the pro-apoptotic effects of BH3 mimetics by selectively influencing BCL-xL binding to key pro-apoptotic effectors.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Mitochondria/genetics , Neoplasms/genetics , bcl-X Protein/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11/genetics , Cell Survival/genetics , Cell-Free System , HCT116 Cells , Humans , Mitochondria/metabolism , Neoplasms/drug therapy , Peptide Fragments/administration & dosage , Proto-Oncogene Proteins/administration & dosage , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL