ABSTRACT
BACKGROUND & AIMS: Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. METHODS: A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. RESULTS: Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79-0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92-1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71-0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. CONCLUSIONS: Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.
Subject(s)
Adenoma , Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/analysis , Cross-Sectional Studies , Biomarkers, Tumor/analysis , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Sequence Analysis, RNA , Adenoma/diagnosis , Adenoma/geneticsABSTRACT
Chemoresistance represents a major issue affecting cancer therapy efficacy. Because microRNAs (miRNAs) regulate gene expression on multiple levels, their role in chemoresistance development is reasonably certain. In our previous study, miR-122-5p and miR-142-5p were identified as diagnostic, prognostic, and predictive biomarkers for primary and metastatic rectal cancer. The aim of the present study was to investigate whether these miRNAs can also reflect the disease course of colon cancer (CC) patients. Further, we focused on a deeper understanding of their involvement in 5-fluorouracil (5-FU) chemoresistance development. The expression analysis of both miRNAs was analysed in repeated whole plasma samplings (n=3, approximately every 6 months) of CC patients (n=49) by RT-qPCR. Expression levels of both miRNAs were determined in the 5-FU sensitive and resistant CC cell lines. From RNA-seq profiles of both sensitive and 5-FU resistant DLD-1 cell lines, the expression levels of miR-122-5p and miR-142-5p validated target genes were detected and compared. Significant differences in the expression levels of both miRNAs between T0 and T1 or T2 samplings were observed. Further, an association between the occurrence of relapse and miR-122-5p expression levels was noticed. Patients who did not relapse had higher expression of miR-122-5p at T1 (p=0.01; 3.16-fold change) and T2 (p=0.04; 2.79-fold change) samplings in comparison with T0 sampling. Out of all miR-122-5p validated targets (n=102), 25 genes were significantly differentially expressed between sensitive and 5-FU-resistant cell lines. Our data suggest that miR-122-5p may represent a predictive marker of tumour relapse in CC patients. In vitro data suggests that this aspect may be linked to the potential therapeutic targets of miR-122-5p related to 5-FU-based chemoresistance. However, deeper mechanistic studies are still needed for progress toward personalized medicine.
ABSTRACT
Diagnostic performance of molecular markers in surrogate tissues like stool may be affected by colorectal cancer (CRC) morphological heterogeneity. The mucinous histotype represents a subgroup of CRC with a peculiar molecular program and unfavorable disease progression. However, the percentage of mucinous morphology necessary to define this subtype is still a matter of debate. In this study, we investigated whether stool miRNA profiles of CRC patients differ in patients with mucinous histopathological subtypes compared to non-mucinous cancers. In this respect, we also explored how the stool miRNA signature reported in our previous multicentric study (Pardini et al., Gastroenterology 2023) behave in this histotype. Small-RNA sequencing was performed in fecal and tissue samples of an Italian cohort (n=172), including 27 CRC with mucinous morphology (mucinous cancers with >50% mucinous morphology and those with mucinous component >5% but <50%), 58 non-mucinous CRC, and 87 colonoscopy-negative controls. Results were compared with fecal miRNA profiles of a cohort from the Czech Republic (n=98). Most of the differentially expressed (DE) stool miRNAs (n=324) were in common between CRC with mucinous morphology and non-mucinous histopathological subtypes in comparison with healthy controls. Interestingly, the altered levels of 25 fecal miRNAs previously identified distinguishing CRC cases from controls in both cohorts were also confirmed after stratification for mucinous morphology. Forty-nine miRNAs were DE exclusively in CRC with mucinous morphology and 61 in non-mucinous CRC. Mucinous cancers and those with mucinous component showed fairly similar profiles that were comparable in the Czech cohort. Among the stool DE miRNAs observed in CRC with mucinous morphology, 20 were also altered in the comparison between tumor and adjacent mucosa tissue. This study highlights miRNAs specifically altered in CRC with mucinous morphology. Nevertheless, the performance of our stool miRNA signature in accurately distinguishing CRC cases from controls was not significantly affected by this histological subtype. This aspect further supports the use of stool miRNAs for noninvasive diagnosis and screening strategies.
ABSTRACT
A colorectal adenoma, an aberrantly growing tissue, arises from the intestinal epithelium and is considered as precursor of colorectal cancer (CRC). In this study, we investigated structural and numerical chromosomal aberrations in adenomas, hypothesizing that chromosomal instability (CIN) occurs early in adenomas. We applied array comparative genomic hybridization (aCGH) to fresh frozen colorectal adenomas and their adjacent mucosa from 16 patients who underwent colonoscopy examination. In our study, histologically similar colorectal adenomas showed wide variability in chromosomal instability. Based on the obtained results, we further stratified patients into four distinct groups. The first group showed the gain of MALAT1 and TALAM1, long non-coding RNAs (lncRNAs). The second group involved patients with numerous microdeletions. The third group consisted of patients with a disrupted karyotype. The fourth group of patients did not show any CIN in adenomas. Overall, we identified frequent losses in genes, such as TSC2, COL1A1, NOTCH1, MIR4673, and GNAS, and gene gain containing MALAT1 and TALAM1. Since long non-coding RNA MALAT1 is associated with cancer cell metastasis and migration, its gene amplification represents an important event for adenoma development.
Subject(s)
Adenoma , Colorectal Neoplasms , Precancerous Conditions , RNA, Long Noncoding , Adenoma/genetics , Adenoma/pathology , Chromosomal Instability , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Comparative Genomic Hybridization , Humans , Precancerous Conditions/genetics , Precancerous Conditions/pathology , RNA, Long Noncoding/geneticsABSTRACT
Oxidative stress, oxidative DNA damage and resulting mutations play a role in colorectal carcinogenesis. Impaired equilibrium between DNA damage formation, antioxidant status, and DNA repair capacity is responsible for the accumulation of genetic mutations and genomic instability. The lesion-specific DNA glycosylases, e.g., hOGG1 and MUTYH, initiate the repair of oxidative DNA damage. Hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome) with germline mutations causing a loss-of-function in base excision repair glycosylases, serve as straight forward evidence on the role of oxidative DNA damage and its repair. Altered or inhibited function of above glycosylases result in an accumulation of oxidative DNA damage and contribute to the adenoma-adenocarcinoma transition. Oxidative DNA damage, unless repaired, often gives rise G:C > T:A mutations in tumor suppressor genes and proto-oncogenes with subsequent occurrence of chromosomal copy-neutral loss of heterozygosity. For instance, G>T transversions in position c.34 of a KRAS gene serves as a pre-screening tool for MUTYH-associated polyposis diagnosis. Since sporadic colorectal cancer represents more complex and heterogenous disease, the situation is more complicated. In the present study we focused on the roles of base excision repair glycosylases (hOGG1, MUTYH) in colorectal cancer patients by investigating tumor and adjacent mucosa tissues. Although we found downregulation of both glycosylases and significantly lower expression of hOGG1 in tumor tissues, accompanied with G>T mutations in KRAS gene, oxidative DNA damage and its repair cannot solely explain the onset of sporadic colorectal cancer. In this respect, other factors (especially microenvironment) per se or in combination with oxidative DNA damage warrant further attention. Base excision repair characteristics determined in colorectal cancer tissues and their association with disease prognosis have been discussed as well.
Subject(s)
Colorectal Neoplasms , DNA Glycosylases , Adenomatous Polyposis Coli , Colorectal Neoplasms/pathology , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair/genetics , Humans , Oxidative Stress/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor MicroenvironmentABSTRACT
One of the principal mechanisms of chemotherapy resistance in highly frequent solid tumors, such as colorectal cancer (CRC), is the decreased activity of drug transport into tumor cells due to low expression of important membrane proteins, such as solute carrier (SLC) transporters. Sequence complementarity is a major determinant for target gene recognition by microRNAs (miRNAs). Single-nucleotide polymorphisms (SNPs) in target sequences transcribed into messenger RNA may therefore alter miRNA binding to these regions by either creating a new site or destroying an existing one. miRSNPs may explain the modulation of expression levels in association with increased/decreased susceptibility to common diseases as well as in chemoresistance and the consequent inter-individual variability in drug response. In the present study, we investigated whether miRSNPs in SLC transporter genes may modulate CRC susceptibility and patient's survival. Using an in silico approach for functional predictions, we analyzed 26 miRSNPs in 9 SLC genes in a cohort of 1368 CRC cases and 698 controls from the Czech Republic. After correcting for multiple tests, we found several miRSNPs significantly associated with patient's survival. SNPs in SLCO3A1, SLC22A2 and SLC22A3 genes were defined as prognostic factors in the classification and regression tree analysis. In contrast, we did not observe any significant association between miRSNPs and CRC risk. To the best of our knowledge, this is the first study investigating miRSNPs potentially affecting miRNA binding to SLC transporter genes and their impact on CRC susceptibility or patient's prognosis.
Subject(s)
Colorectal Neoplasms/genetics , MicroRNAs/metabolism , Neoplasm Recurrence, Local/epidemiology , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Organic Cation Transporter 2/genetics , 3' Untranslated Regions/genetics , Aged , Binding Sites/genetics , Case-Control Studies , Chemotherapy, Adjuvant , Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Computational Biology , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Male , MicroRNAs/blood , Middle Aged , Neoplasm Recurrence, Local/prevention & control , Polymorphism, Single Nucleotide , Prognosis , RNA, Messenger/blood , RNA, Messenger/geneticsABSTRACT
Cell-free DNA (cfDNA) has recently been used as a non-invasive diagnostic tool for detecting tumour-specific mutations. cfDNA may also be used for monitoring disease progression and treatment response, but so far researchers focused on one or few genes only. A genomic profile may provide better information on patient prognosis compared to single specific mutations. In this hypothesis-generating study, we profiled by whole exome sequencing serial plasma samples from 10 colon cancer (CC) patients collected before and after 5-fluorouracil-based therapy, and one year after diagnosis to determine alterations associated with treatment response. In parallel, genome profiling was also performed in patients' corresponding tumour tissue to ascertain the molecular landscape of resistant tumours. The mutation concordance between cfDNA and tumour tissue DNA was higher in more advanced tumour stages than in the early stages of the disease. In non-responders, a specific mutation profile was observed in tumour tissues (TPSD1 p.Ala92Thr, CPAMD8 p.Arg341Gln, OBP2A p.ArgTyr123CysHis). A pathogenic APC mutation (p.Ser1315Ter) was detected only in cfDNA of one poor responder one year after the diagnosis and after therapy termination. Another poor responder presented a likely pathogenic TP53 mutation (p.Arg110Pro) in cfDNA of all plasma samplings and in tumour tissue. In conclusion, cfDNA could be used for genetic characterisation of CC patients and might be clinically useful for non-invasive therapy response monitoring.
Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , DNA, Neoplasm , Mutation , Aged , Colonic Neoplasms/blood , Colonic Neoplasms/therapy , Female , Fluorouracil/pharmacology , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Sequence Analysis, DNAABSTRACT
Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3'-untranslated regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair. Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (HR = 4.15, 95% CI = 1.7-10.16, P = 0.002) and disease-free survival (HR = 2.56, 95% CI = 1.5-5.7, P = 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
Subject(s)
3' Untranslated Regions , Breast Neoplasms/genetics , DNA Glycosylases/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Polymorphism, Single Nucleotide , Uracil-DNA Glycosidase/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/enzymology , Breast Neoplasms/epidemiology , Breast Neoplasms/therapy , Case-Control Studies , DNA Repair , Disease-Free Survival , Female , Humans , MicroRNAs/metabolism , Middle Aged , Prognosis , Risk , White People/geneticsABSTRACT
Interindividual differences in DNA repair systems may play a role in modulating the individual risk of developing colorectal cancer. To better ascertain the role of DNA repair gene polymorphisms on colon and rectal cancer risk individually, we evaluated 15,419 single nucleotide polymorphisms (SNPs) within 185 DNA repair genes using GWAS data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), which included 8,178 colon cancer, 2,936 rectum cancer cases and 14,659 controls. Rs1800734 (in MLH1 gene) was associated with colon cancer risk (p-value = 3.5 × 10-6 ) and rs2189517 (in RAD51B) with rectal cancer risk (p-value = 5.7 × 10-6 ). The results had statistical significance close to the Bonferroni corrected p-value of 5.8 × 10-6 . Ninety-four SNPs were significantly associated with colorectal cancer risk after Binomial Sequential Goodness of Fit (BSGoF) procedure and confirmed the relevance of DNA mismatch repair (MMR) and homologous recombination pathways for colon and rectum cancer, respectively. Defects in MMR genes are known to be crucial for familial form of colorectal cancer but our findings suggest that specific genetic variations in MLH1 are important also in the individual predisposition to sporadic colon cancer. Other SNPs associated with the risk of colon cancer (e.g., rs16906252 in MGMT) were found to affect mRNA expression levels in colon transverse and therefore working as possible cis-eQTL suggesting possible mechanisms of carcinogenesis.
Subject(s)
Colonic Neoplasms/genetics , DNA Repair/genetics , Genetic Predisposition to Disease , Rectal Neoplasms/genetics , Adult , Aged , Biological Variation, Population/genetics , Carcinogenesis/genetics , Case-Control Studies , Colon/pathology , Colonic Neoplasms/pathology , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Humans , Male , Middle Aged , MutL Protein Homolog 1/genetics , Polymorphism, Single Nucleotide , Rectal Neoplasms/pathology , Rectum/pathology , Registries/statistics & numerical data , Risk Assessment , Tumor Suppressor Proteins/genetics , Young AdultABSTRACT
The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case-control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR)â =â 1.48; Pâ =â 0.002; AA vs. GG, HRâ =â 1.70; Pâ =â 0.004 and GAâ +â AA vs. GG, HRâ =â 1.52; Pâ =â 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.
Subject(s)
ATP-Binding Cassette Transporters/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/therapeutic use , ATP-Binding Cassette Transporters/blood , Aged , Case-Control Studies , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Databases, Genetic , Female , Follow-Up Studies , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait LociABSTRACT
Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.
Subject(s)
Breast Neoplasms/genetics , RNA/genetics , Telomerase/genetics , Telomere Homeostasis/genetics , Adult , Aged , Aged, 80 and over , Alleles , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Humans , Leukocytes/pathology , Leukocytes, Mononuclear , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Middle Aged , Neoplasm Staging , Polymorphism, Single Nucleotide/geneticsABSTRACT
The phenotypic effects of single nucleotide polymorphisms (SNPs) in the development of sporadic solid cancers are still scarce. The aim of this review was to summarise and analyse published data on the associations between SNPs in mismatch repair genes and various cancers. The mismatch repair system plays a unique role in the control of the genetic integrity and it is often inactivated (germline and somatic mutations and hypermethylation) in cancer patients. Here, we focused on germline variants in mismatch repair genes and found the outcomes rather controversial: some SNPs are sometimes ascribed as protective, while other studies reported their pathological effects. Regarding the complexity of cancer as one disease, we attempted to ascertain if particular polymorphisms exert the effect in the same direction in the development and treatment of different malignancies, although it is still not straightforward to conclude whether polymorphisms always play a clear positive role or a negative one. Most recent and robust genome-wide studies suggest that risk of cancer is modulated by variants in mismatch repair genes, for example in colorectal cancer. Our study shows that rs1800734 in MLH1 or rs2303428 in MSH2 may influence the development of different malignancies. The lack of functional studies on many DNA mismatch repair SNPs as well as their interactions are not explored yet. Notably, the concerted action of more variants in one individual may be protective or harmful. Further, complex interactions of DNA mismatch repair variations with both the environment and microenvironment in the cancer pathogenesis will deserve further attention.
Subject(s)
DNA Mismatch Repair/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Neoplasms/genetics , DNA Methylation/genetics , Disease Progression , Germ-Line Mutation/genetics , Humans , Neoplasms/pathology , Polymorphism, Single Nucleotide/geneticsABSTRACT
Colorectal cancer (CRC) is a malignant disease with an incidence of over 1.8 million new cases per year worldwide. CRC outcome is closely related to the respective stage of CRC and is more favorable at less advanced stages. Detection of early colorectal adenomas is the key to survival. In spite of implemented screening programs showing efficiency in the detection of early precancerous lesions and CRC in asymptomatic patients, a significant number of patients are still diagnosed in advanced stages. Research on CRC accomplished during the last decade has improved our understanding of the etiology and development of colorectal adenomas and revealed weaknesses in the general approach to their detection and elimination. Recent studies seek to find a reliable non-invasive biomarker detectable even in the blood. New candidate biomarkers could be selected on the basis of so-called liquid biopsy, such as long non-coding RNA, microRNA, circulating cell-free DNA, circulating tumor cells, and inflammatory factors released from the adenoma into circulation. In this work, we focused on both genetic and epigenetic changes associated with the development of colorectal adenomas into colorectal carcinoma and we also discuss new possible biomarkers that are detectable even in adenomas prior to cancer development.
Subject(s)
Adenoma/genetics , Biomarkers, Tumor , Colorectal Neoplasms/genetics , Disease Susceptibility , Adenoma/diagnosis , Adenoma/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Early Detection of Cancer , Gene Expression Regulation, Neoplastic , Genetic Variation , HumansABSTRACT
Colorectal cancer (CRC) remains a serious health problem worldwide. Approximately half of patients will develop distant metastasis after CRC resection, usually with very poor prognosis afterwards. Because patient performance after distant metastasis surgery remains very heterogeneous, ranging from death within 2 years to a long-term cure, there is a clinical need for a precise risk stratification of patients to aid pre- and post-operative decisions. Furthermore, around 20% of identified CRC cases are at IV stage disease, known as a metastatic CRC (mCRC). In this review, we overview possible molecular and clinicopathological biomarkers that may provide prognostic and predictive information for patients with distant metastasis. These may comprise sidedness of the tumor, molecular profile and epigenetic characteristics of the primary tumor and arising metastatic CRC, and early markers reflecting cancer cell resistance in mCRC and biomarkers identified from transcriptome. This review discusses current stage in employment of these biomarkers in clinical practice as well as summarizes current experience in identifying predictive biomarkers in mCRC treatment.
Subject(s)
Biomarkers, Tumor/biosynthesis , Colorectal Neoplasms , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Humans , Neoplasm MetastasisABSTRACT
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Subject(s)
Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , DNA Damage , Disease Susceptibility , Oxidative Stress , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cellular Microenvironment , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , DNA Glycosylases/metabolism , DNA Repair , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Molecular Targeted TherapyABSTRACT
BACKGROUND: Telomeres, repetitive DNA capping ends of eukaryotic chromosomes, are important in the maintenance of genomic integrity. Perturbed telomeres are common features of many human malignancies, including colorectal cancer. METHODS: Telomere length (TL), measured by a Monochrome Multiplex Real-Time qPCR, was investigated in tumour tissues, adjacent mucosa, and blood from patients with colorectal cancer with different clinicopathological features and its impact on patient survival. TL was also measured in a limited number of liver metastases, non-cancerous liver tissues or corresponding tissues from the same patients. RESULTS: TL in tumour tissues was shorter than in the adjacent mucosa (P < 0.0001). Shorter TL was observed in tumours with lower stage than in those with advanced stages (P = 0.001). TL was shorter in tumours at the proximal than at the distal sites of the colon (P < 0.0001). Shorter TL was also associated with microsatellite instability (P = 0.001) and mucinous tumour histology (P < 0.0001). Patients with a smaller TL ratio between tumour tissues and the adjacent mucosa were associated with increased overall survival (P = 0.022). Metastasised tumours had shorter telomeres than the adjacent non-cancerous liver tissues (P = 0.0005). CONCLUSIONS: Overall, the results demonstrate differences in TL between tumours and the adjacent mucosa, between tumours located at different sites and association with patient survival.
Subject(s)
Colorectal Neoplasms/genetics , Telomere , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Humans , Lymphatic Metastasis , Male , Microsatellite Instability , Middle Aged , Phenotype , PrognosisABSTRACT
Non-specific structural chromosomal aberrations (CAs) observed in peripheral blood lymphocytes of healthy individuals can be either chromosome-type aberrations (CSAs) or chromatid-type aberrations (CTAs) depending on the stage of cell division they are induced in and mechanism of formation. It is important to study the genetic basis of chromosomal instability as it is a marker of genotoxic exposure and a predictor of cancer risk. For that purpose, we conducted two genome-wide association studies (GWASs) on healthy individuals in the presence and absence of apparent genotoxic exposure from the Czech Republic and Slovakia. The pre-GWAS cytogenetic analysis reported the frequencies of CSA, CTA and total CA (CAtot). We performed both linear and binary logistic regression analysis with an arbitrary cut-off point of 2% for CAtot and 1% for CSA and CTA. Using the statistical threshold of 1.0 × 10-5, we identified five loci with in silico predicted functionality in the reference group and four loci in the exposed group, with no overlap between the associated regions. A meta-analysis on the two GWASs identified further four loci with moderate associations in each of the studies. From the reference group mainly loci within genes related to DNA damage response/repair were identified. Other loci identified from both the reference and exposed groups were found to be involved in the segregation of chromosomes and chromatin modification. Some of the discovered regions in each group were implicated in tumourigenesis and autism.
Subject(s)
Chromosome Aberrations/drug effects , DNA Damage/drug effects , Gene Frequency , Genetics, Population , Mutagens/adverse effects , Adult , Aged , Aged, 80 and over , Alleles , Cytogenetic Analysis , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Meta-Analysis as Topic , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Young AdultABSTRACT
There is increasing evidence indicating a role for Fusobacterium nucleatum (F. nucleatum) in colorectal cancer (CRC) development and prognosis. This study evaluated F. nucleatum as a prognostic biomarker, by assessing its association with post-diagnosis survival from CRC. From September 2008 to April 2012 CRC patients (n = 190) were recruited from three hospitals within the Czech Republic. F. nucleatum DNA copies were measured in adjacent non-malignant and colorectal tumor tissues using quantitative real-time PCR. Cox Proportional Hazards (HR) models were applied to evaluate the association between F. nucleatum DNA and overall survival, adjusting for key confounders. Risk prediction modeling was conducted to evaluate the ability to predict survival based on F. nucleatum status. High, compared with low, levels of F. nucleatum in colorectal tumor tissues were associated with poorer overall survival (adjusted HR 1.68, 95% CI 1.02-2.77), which was slightly attenuated after additional adjustment for microsatellite instability status. However, inclusion of F. nucleatum in risk prediction models did not improve the ability to identify patients who died beyond known prognostic factors such as disease pathology staging. Although the increased presence of F. nucleatum was associated with poorer prognosis in CRC patients, this may have limited clinical relevance as a prognostic biomarker.
Subject(s)
Biomarkers/analysis , Colorectal Neoplasms/pathology , DNA, Bacterial/analysis , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/genetics , Aged , Aged, 80 and over , Cohort Studies , Colorectal Neoplasms/mortality , Czech Republic , Female , Humans , Male , Middle Aged , Prognosis , Real-Time Polymerase Chain Reaction , Risk Assessment , Survival AnalysisABSTRACT
MicroRNA (miRNA) profiling represents a promising source of cancer-related biomarkers. miRNA signatures are specific for each cancer type and subgroups of patients with diverse treatment sensitivity. Yet this miRNA potential has not been satisfactorily explored in rectal cancer (RC). The aim of the study was to identify the specific miRNA signature with clinical and therapeutic relevance for RC. Expressions of 2555 miRNA were examined in 20 pairs of rectal tumors and matched non-malignant tissues by 3D-Gene Toray microarray. Candidate miRNAs were validated in an independent cohort of 100 paired rectal tissues and in whole plasma and exosomes of 100 RC patients. To study the association of miRNA profile with therapeutic outcomes, plasma samples were taken repeatedly over a time period of 1 year reflecting thus patients' treatment responses. Finally, the most prominent miRNAs were investigated in vitro for their involvement in cell growth. We identified RC-specific miRNA signature that distinguishes responders from non-responders to adjuvant chemotherapy. A predominant part of identified miRNAs was represented by the members of miR-17/92 cluster. Upregulation of miRNA-17, -18a, -18b, -19a, -19b, -20a, -20b and -106a in tumor was associated with higher risk of tumor relapse and their overexpression in RC cell lines stimulated cellular proliferation. Examination of these miRNAs in plasma exosomes showed that their levels differed between RC patients and healthy controls and correlated with patient's treatment response. miRNAs from miR-17/92 cluster represent a non-invasive biomarker to predict posttreatment prognosis in RC patients.
Subject(s)
Antineoplastic Agents/therapeutic use , MicroRNAs/genetics , Rectal Neoplasms/drug therapy , Rectal Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Rectal Neoplasms/mortality , Treatment OutcomeABSTRACT
There is a strong demand for the identification of new biomarkers in colorectal cancer (CRC) diagnosis. Among all liquid biopsy analysts, cell-free circulating DNA (cfDNA) is probably the most promising tool with respect to the identification of minimal residual diseases, assessment of treatment response and prognosis, and identification of resistance mechanisms. Circulating cell-free tumor DNA (ctDNA) maintains the same genomic signatures that are present in the matching tumor tissue allowing for the quantitative and qualitative evaluation of mutation burdens in body fluids. Thus, ctDNA-based research represents a non-invasive method for cancer detection. Among the numerous possible applications, the diagnostic, predictive, and/or prognostic utility of ctDNA in CRC has attracted intense research during the last few years. In the present review, we will describe the different aspects related to cfDNA research and evidence from studies supporting its potential use in CRC diagnoses and the improvement of therapy efficacy. We believe that ctDNA-based research should be considered as key towards the introduction of personalized medicine and patient benefits.