Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Appl Environ Microbiol ; 89(1): e0186322, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36645281

ABSTRACT

Microbial expansin-related proteins are ubiquitous across bacterial and fungal organisms and reportedly play a role in the modification and deconstruction of cell wall polysaccharides, including lignocellulose. So far, very few microbial expansin-related proteins, including loosenins and loosenin-like (LOOL) proteins, have been functionally characterized. Herein, four LOOLs encoded by Phanerochaete carnosa and belonging to different subfamilies (i.e., PcaLOOL7 and PcaLOOL9 from subfamily A and PcaLOOL2 and PcaLOOL12 from subfamily B) were recombinantly produced and the purified proteins were characterized using diverse cellulose and chitin substrates. The purified PcaLOOLs weakened cellulose filter paper and cellulose nanofibril networks (CNF); however, none significantly boosted cellulase activity on the selected cellulose substrates (Avicel and Whatman paper). Although fusing the family 63 carbohydrate-binding module (CBM63) of BsEXLX1 encoded by Bacillus subtilis to PcaLOOLs increased their binding to cellulose, the CBM63 fusion appeared to reduce the cellulose filter paper weakening observed using wild-type proteins. Binding of PcaLOOLs to alpha-chitin was considerably higher than that to cellulose (Avicel) and was pH dependent, with the highest binding at pH 5.0. Amendment of certain PcaLOOLs in fungal liquid cultivations also impacted the density of the cultivated mycelia. The present study reveals the potential of fungal expansin-related proteins to impact both cellulose and chitin networks and points to a possible biological role in fungal cell wall processing. IMPORTANCE The present study deepens investigations of microbial expansin-related proteins and their applied significance by (i) reporting a detailed comparison of diverse loosenins encoded by the same organism, (ii) considering both cellulosic and chitin-containing materials as targeted substrates, and (iii) investigating the impact of the C-terminal carbohydrate binding module (CBM) present in other expansin-related proteins on loosenin function. By revealing the potential of fungal loosenins to impact both cellulose and chitin-containing networks, our study reveals a possible biological and applied role of loosenins in fungal cell wall processing.


Subject(s)
Cellulose , Phanerochaete , Cellulose/metabolism , Chitin , Phanerochaete/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Biochem J ; 478(16): 3063-3078, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34338284

ABSTRACT

Plant cell walls are highly dynamic structures that are composed predominately of polysaccharides. As such, endogenous carbohydrate active enzymes (CAZymes) are central to the synthesis and subsequent modification of plant cells during morphogenesis. The endo-glucanase 16 (EG16) members constitute a distinct group of plant CAZymes, angiosperm orthologs of which were recently shown to have dual ß-glucan/xyloglucan hydrolase activity. Molecular phylogeny indicates that EG16 members comprise a sister clade with a deep evolutionary relationship to the widely studied apoplastic xyloglucan endo-transglycosylases/hydrolases (XTH). A cross-genome survey indicated that EG16 members occur as a single ortholog across species and are widespread in early diverging plants, including the non-vascular bryophytes, for which functional data were previously lacking. Remarkably, enzymological characterization of an EG16 ortholog from the model moss Physcomitrella patens (PpEG16) revealed that EG16 activity and sequence/structure are highly conserved across 500 million years of plant evolution, vis-à-vis orthologs from grapevine and poplar. Ex vivo biomechanical assays demonstrated that the application of EG16 gene products caused abrupt breakage of etiolated hypocotyls rather than slow extension, thereby indicating a mode-of-action distinct from endogenous expansins and microbial endo-glucanases. The biochemical data presented here will inform future genomic, genetic, and physiological studies of EG16 enzymes.


Subject(s)
Bryopsida/genetics , Cellulase/genetics , Plant Proteins/genetics , Plants/genetics , Amino Acid Sequence , Biocatalysis , Bryopsida/enzymology , Cellulase/chemistry , Cellulase/metabolism , Evolution, Molecular , Glucans/metabolism , Kinetics , Models, Molecular , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/classification , Plants/enzymology , Protein Conformation , Sequence Homology, Amino Acid , Substrate Specificity , Xylans/metabolism , beta-Glucans/metabolism
3.
Methods Mol Biol ; 2657: 79-88, 2023.
Article in English | MEDLINE | ID: mdl-37149523

ABSTRACT

Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on the weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.


Subject(s)
Bacteria , Cell Wall , Bacteria/metabolism , Cell Wall/metabolism , Cell Membrane/metabolism , Plant Proteins/metabolism
4.
Cell Surf ; 8: 100089, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426175

ABSTRACT

Cellulose microfibril patterning influences many of the mechanical attributes of plant cell walls. We developed a simple, fluorescence microscopy-based method to detect the orientation of newly-synthesized cellulose microfibrils in epidermal peels of onion and Arabidopsis. It is based on Alexa Fluor 488-tagged carbohydrate binding module 3a (CBM3a) from Clostridium thermocellum which displayed a nearly 4-fold greater binding to cell walls at pH 5.5 compared with pH 8. Binding to isolated cellulose did not display this pH dependence. At pH 7.5 fibrillar patterns at the surface of the epidermal peels were visible, corresponding to the directionality of surface cellulose microfibrils, as verified by atomic force microscopy. The fibrillar pattern was not visible as the labeling intensity increased at lower pH. The pH of greatest cell wall labeling corresponds to the isoelectric point of CBM3a, suggesting that electrostatic forces limit CBM3a penetration into the wall. Consistent with this, digestion of the wall with pectate lyase to remove homogalacturonan increased labeling intensity. We conclude that electrostatic interactions strongly influence labeling of cell walls with CBM3 and potentially other proteins, holding implications for any work that relies on penetration of protein probes such as CBMs, antibodies, or enzymes into charged polymeric substrates.

5.
Methods Mol Biol ; 1588: 157-165, 2017.
Article in English | MEDLINE | ID: mdl-28417367

ABSTRACT

Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here, we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Plant Cells/metabolism , Bacterial Proteins/chemistry , Biomechanical Phenomena , Paper
SELECTION OF CITATIONS
SEARCH DETAIL