Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell ; 181(1): 189-206, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32220311

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.


Subject(s)
Anti-HIV Agents/therapeutic use , Chronic Disease/therapy , HIV Infections/therapy , HIV-1/drug effects , Immunotherapy/methods , Virus Latency/drug effects , Animals , Haplorhini , Humans
2.
Nature ; 591(7850): 451-457, 2021 03.
Article in English | MEDLINE | ID: mdl-33561864

ABSTRACT

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Cytidine/analogs & derivatives , Hydroxylamines/administration & dosage , Hydroxylamines/therapeutic use , Administration, Oral , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/immunology , Chemoprevention , Chiroptera/virology , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Cytidine/administration & dosage , Cytidine/therapeutic use , Cytokines/immunology , Epithelial Cells/virology , Female , Heterografts , Humans , Immunity, Innate , Interferon Type I/immunology , Lung/immunology , Lung/pathology , Lung/virology , Lung Transplantation , Male , Mice , Post-Exposure Prophylaxis , Pre-Exposure Prophylaxis , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virus Replication
3.
Nature ; 578(7793): 154-159, 2020 02.
Article in English | MEDLINE | ID: mdl-31969705

ABSTRACT

Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1-4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-15/agonists , Simian Immunodeficiency Virus/physiology , Virus Replication , Animals , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , Humans , Interleukin-15/immunology , Lymphocyte Depletion , Macaca mulatta , Mice , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Virus Latency , Virus Replication/immunology
5.
Nature ; 578(7793): 160-165, 2020 02.
Article in English | MEDLINE | ID: mdl-31969707

ABSTRACT

Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2-9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow-liver-thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal-in combination with appropriate tools for systemic clearance of persistent HIV infection-greatly increases opportunities for HIV eradication.


Subject(s)
HIV Infections/virology , HIV-1/physiology , NF-kappa B/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Latency , Alkynes/pharmacology , Animals , Anti-Retroviral Agents/pharmacology , HIV Infections/metabolism , HIV-1/drug effects , Macaca mulatta , Mice , Oligopeptides/pharmacology , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/drug effects , Virus Latency/drug effects
6.
PLoS Pathog ; 19(12): e1011824, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055722

ABSTRACT

Lifelong treatment is required for people living with HIV as current antiretroviral therapy (ART) does not eradicate HIV infection. Latently infected cells are essentially indistinguishable from uninfected cells and cannot be depleted by currently available approaches. This study evaluated antibody mediated transient CD4+ T cell depletion as a strategy to reduce the latent HIV reservoir. Anti-CD4 antibodies effectively depleted CD4+ T cells in the peripheral blood and tissues of humanized mice. We then demonstrate that antibody-mediated CD4+ T cell depletion of HIV infected ART-suppressed animals results in substantial reductions in cell-associated viral RNA and DNA levels in peripheral blood cells over the course of anti-CD4 antibody treatment. Recovery of CD4+ T cells was observed in all tissues analyzed except for the lung 26 days after cessation of antibody treatment. After CD4+ T cell recovery, significantly lower levels of cell-associated viral RNA and DNA were detected in the tissues of anti-CD4 antibody-treated animals. Further, an 8.5-fold reduction in the levels of intact HIV proviral DNA and a 3.1-fold reduction in the number of latently infected cells were observed in anti-CD4-antibody-treated animals compared with controls. However, there was no delay in viral rebound when ART was discontinued in anti-CD4 antibody-treated animals following CD4+ T cell recovery compared with controls. Our results suggest that transient CD4+ T cell depletion, a long-standing clinical intervention that might have an acceptable safety profile, during suppressive ART can reduce the size of the HIV reservoir in humanized mice.


Subject(s)
HIV Infections , HIV-1 , Humans , Mice , Animals , CD4-Positive T-Lymphocytes , Virus Latency , Virus Replication , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , RNA, Viral , DNA , Viral Load
7.
Retrovirology ; 21(1): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38945996

ABSTRACT

BACKGROUND: Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS: Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION: These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.


Subject(s)
Disease Models, Animal , HIV Infections , HIV-1 , Neuroinflammatory Diseases , Neurons , Animals , Mice , HIV Infections/virology , HIV Infections/pathology , HIV Infections/complications , Humans , Neurons/virology , Neurons/pathology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , Brain/pathology , Brain/virology , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism
8.
Retrovirology ; 20(1): 1, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639783

ABSTRACT

HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.


Subject(s)
HIV Infections , Nervous System Diseases , Humans , HIV Infections/complications , Brain , Macrophages , HIV , Monocytes
9.
J Antimicrob Chemother ; 71(11): 3185-3194, 2016 11.
Article in English | MEDLINE | ID: mdl-27494916

ABSTRACT

BACKGROUND: Approximately 1.5 million HIV-positive women become pregnant annually. Without treatment, up to 45% will transmit HIV to their infants, primarily through breastfeeding. These numbers highlight that HIV acquisition is a major health concern for women and children globally. They also emphasize the urgent need for novel approaches to prevent HIV acquisition that are safe, effective and convenient to use by women and children in places where they are most needed. METHODS: 4'-Ethynyl-2-fluoro-2'-deoxyadenosine, a potent NRTI with low cytotoxicity, was administered orally to NOD/SCID/γc-/- mice and to bone marrow/liver/thymus (BLT) humanized mice, a preclinical model of HIV infection. HIV inhibitory activity in serum, cervicovaginal secretions and saliva was evaluated 4 h after administration. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine's ability to prevent vaginal and oral HIV transmission was evaluated using highly relevant transmitted/founder viruses in BLT mice. RESULTS: Strong HIV inhibitory activity in serum, cervicovaginal secretions and saliva obtained from animals after a single oral dose of 4'-ethynyl-2-fluoro-2'-deoxyadenosine (10 mg/kg) demonstrated efficient drug penetration into relevant mucosal sites. A single daily oral dose of 4'-ethynyl-2-fluoro-2'-deoxyadenosine resulted in efficient prevention of vaginal and oral HIV transmission after multiple high-dose exposures to transmitted/founder viruses in BLT humanized mice. CONCLUSIONS: Our data demonstrated that 4'-ethynyl-2-fluoro-2'-deoxyadenosine efficiently prevents both vaginal and oral HIV transmission. Together with 4'-ethynyl-2-fluoro-2'-deoxyadenosine's relatively low toxicity and high potency against drug-resistant HIV strains, these data support further clinical development of 4'-ethynyl-2-fluoro-2'-deoxyadenosine as a potential pre-exposure prophylaxis agent to prevent HIV transmission in women and their infants.


Subject(s)
Anti-HIV Agents/administration & dosage , Deoxyadenosines/administration & dosage , Disease Transmission, Infectious/prevention & control , HIV Infections/prevention & control , Mouth/virology , Pre-Exposure Prophylaxis/methods , Vagina/virology , Animals , Bodily Secretions/virology , Disease Models, Animal , Female , HIV Infections/transmission , Longitudinal Studies , Mice , Mice, SCID
10.
J Virol ; 89(21): 10868-78, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26292320

ABSTRACT

UNLABELLED: Despite the nutritional and health benefits of breast milk, breast milk can serve as a vector for mother-to-child HIV transmission. Most HIV-infected infants acquire HIV through breastfeeding. Paradoxically, most infants breastfed by HIV-positive women do not become infected. This is potentially attributed to anti-HIV factors in breast milk. Breast milk of HIV-negative women can inhibit HIV infection. However, the HIV-inhibitory activity of breast milk from HIV-positive mothers has not been evaluated. In addition, while significant differences in breast milk composition between transmitting and nontransmitting HIV-positive mothers have been correlated with transmission risk, the HIV-inhibitory activity of their breast milk has not been compared. This knowledge may significantly impact the design of prevention approaches in resource-limited settings that do not deny infants of HIV-positive women the health benefits of breast milk. Here, we utilized bone marrow/liver/thymus humanized mice to evaluate the in vivo HIV-inhibitory activity of breast milk obtained from HIV-positive transmitting and nontransmitting mothers. We also assessed the species specificity and biochemical characteristics of milk's in vivo HIV-inhibitory activity and its ability to inhibit other modes of HIV infection. Our results demonstrate that breast milk of HIV-positive mothers has potent HIV-inhibitory activity and indicate that breast milk can prevent multiple routes of infection. Most importantly, this activity is unique to human milk. Our results also suggest multiple factors in breast milk may contribute to its HIV-inhibitory activity. Collectively, our results support current recommendations that HIV-positive mothers in resource-limited settings exclusively breastfeed in combination with antiretroviral therapy. IMPORTANCE: Approximately 240,000 children become infected with HIV annually, the majority via breastfeeding. Despite daily exposure to virus in breast milk, most infants breastfed by HIV-positive women do not acquire HIV. The low risk of breastfeeding-associated HIV transmission is likely due to antiviral factors in breast milk. It is well documented that breast milk of HIV-negative women can inhibit HIV infection. Here, we demonstrate, for the first time, that breast milk of HIV-positive mothers (nontransmitters and transmitters) inhibits HIV transmission. We also demonstrate that breast milk can prevent multiple routes of HIV acquisition and that this activity is unique to human milk. Collectively, our results support current guidelines which recommend that HIV-positive women in resource-limited settings exclusively breastfeed in combination with infant or maternal antiretroviral therapy.


Subject(s)
HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/transmission , Infectious Disease Transmission, Vertical/prevention & control , Milk, Human/chemistry , Animals , Blotting, Western , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Female , Humans , Infectious Disease Transmission, Vertical/statistics & numerical data , Macaca mulatta , Mice , Milk, Human/immunology , Species Specificity , Zambia
11.
Antimicrob Agents Chemother ; 59(12): 7847-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26392489

ABSTRACT

We used bone marrow/liver/thymus (BLT) humanized mice to establish the effect of semen on vaginal HIV infection and on the efficacy of topically applied maraviroc. Our results demonstrate that vaginal transmission of cell-free HIV occurs efficiently in the presence of semen and that topically applied maraviroc efficiently prevents HIV transmission in the presence of semen. We also show that semen has no significant effect on the transmission of transmitted/founder viruses or cell-associated viruses.


Subject(s)
Anti-HIV Agents/pharmacology , Cyclohexanes/pharmacology , HIV Infections/prevention & control , HIV-1/drug effects , Semen/drug effects , Triazoles/pharmacology , Vagina/drug effects , Administration, Intravaginal , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Disease Models, Animal , Female , HIV Infections/immunology , HIV Infections/transmission , HIV Infections/virology , HIV-1/physiology , Humans , Male , Maraviroc , Mice , Mice, Transgenic , Semen/virology , Vagina/immunology , Vagina/virology , Viral Load/drug effects
12.
J Virol ; 87(10): 5437-46, 2013 May.
Article in English | MEDLINE | ID: mdl-23468485

ABSTRACT

Over 90% of the adult human population is chronically infected with the Epstein-Barr virus (EBV), an oncogenic herpesvirus. EBV primarily infects naive human B cells and persists latently in memory B cells. Most individuals experience an asymptomatic infection that is effectively controlled by the adaptive immune response. However, EBV-associated lymphomas can develop in immunocompromised individuals. These tumors typically express all nine EBV latent proteins (latency III). Latency III is also associated with the expression of three precursor microRNAs (miRNAs) located within the EBV BHRF1 gene locus. The role of these BHRF1 miRNAs was unclear until recent in vitro studies demonstrated that they cooperate to enhance virus-induced B cell transformation and decrease the antigenic load of virus-infected cells, indicating that the BHRF1 miRNA cluster may serve as a novel therapeutic target for the treatment of latency III EBV-associated malignancies. However, to date, it is not known if BHRF1 miRNAs enhance virus-induced oncogenesis and/or immune evasion of EBV in vivo. To understand the in vivo contribution of the BHRF1 miRNA cluster to EBV infection and EBV-associated tumorigenesis, we monitored EBV infection and assessed tumor formation in humanized mice exposed to wild-type virus and a viral mutant (Δ123) that lacks all three BHRF1 miRNAs. Our results demonstrate that while the BHRF1 miRNAs facilitate the development of acute systemic EBV infection, they do not enhance the overall oncogenic potential of EBV in vivo.


Subject(s)
Cell Transformation, Neoplastic , Herpesvirus 4, Human/pathogenicity , Lymphoma/virology , MicroRNAs/metabolism , Animals , Disease Models, Animal , Herpesvirus 4, Human/genetics , Lymphoma/pathology , Mice , Mice, SCID , MicroRNAs/genetics , Tumor Virus Infections/genetics
13.
PLoS Pathog ; 8(6): e1002732, 2012.
Article in English | MEDLINE | ID: mdl-22737068

ABSTRACT

Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4⁺ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4⁺ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV Infections/transmission , HIV-1/drug effects , Milk, Human , Mouth/virology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Duodenum/cytology , Duodenum/immunology , Duodenum/virology , Esophagus/cytology , Esophagus/immunology , Esophagus/virology , HIV Infections/immunology , HIV-1/immunology , Humans , Macrophages/cytology , Macrophages/immunology , Mice , Milk, Human/virology , Mouth/cytology , Mouth/immunology , Stomach/cytology , Stomach/immunology , Stomach/virology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
14.
Retrovirology ; 10: 121, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24156277

ABSTRACT

BACKGROUND: The major targets of HIV infection in humans are CD4⁺ T cells. CD4⁺ T cell depletion is a hallmark of AIDS. Previously, the SCID-hu thy/liv model was used to study the effect of HIV on thymopoeisis in vivo. However, these mice did not develop high levels of peripheral T cell reconstitution and required invasive surgery for infection and analysis. Here, we describe a novel variant of this model in which thy/liv implantation results in systemic reconstitution with human T cells in the absence of any other human hematopoietic lineages. RESULTS: NOD/SCID-hu thy/liv and NSG-hu thy/liv mice were created by implanting human fetal thymus and liver tissues under the kidney capsule of either NOD/SCID or NSG mice. In contrast to NOD/SCID-hu thy/liv mice that show little or no human cells in peripheral blood or tissues, substantial systemic human reconstitution occurs in NSG-hu thy/liv. These mice are exclusively reconstituted with human T cells (i.e. T-cell only mice or TOM). Despite substantial levels of human T cells no signs of graft-versus-host disease (GVHD) were noted in these mice over a period of 14 months. TOM are readily infected after parenteral exposure to HIV-1. HIV replication is sustained in peripheral blood at high levels and results in modest reduction of CD4⁺ T cells. HIV-1 replication in TOM responds to daily administration of combination antiretroviral therapy (ART) resulting in strong suppression of virus replication as determined by undetectable viral load in plasma. Latently HIV infected resting CD4⁺ T cells can be isolated from suppressed mice that can be induced to express HIV ex-vivo upon activation demonstrating the establishment of latency in vivo. CONCLUSIONS: NSG-hu thy/liv mice are systemically reconstituted with human T cells. No other human lymphoid lineages are present in these mice (i.e. monocytes/macrophages, B cells and DC are all absent). These T cell only mice do not develop GVHD, are susceptible to HIV-1 infection and can efficiently maintain virus replication. HIV infected TOM undergoing ART harbor latently infected, resting CD4+ T cells.


Subject(s)
Disease Models, Animal , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Virus Latency , Animals , Anti-Retroviral Agents/administration & dosage , Humans , Liver/immunology , Liver/virology , Mice , Mice, SCID , Plasma/virology , Thymus Gland/immunology , Thymus Gland/virology , Treatment Outcome , Viral Load
15.
J Virol ; 86(1): 630-4, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22013053

ABSTRACT

Here we demonstrate that a combination of tenofovir, emtricitabine, and raltegravir effectively suppresses peripheral and systemic HIV replication in humanized BLT mice. We also demonstrate that antiretroviral therapy (ART)-treated humanized BLT mice harbor latently infected resting human CD4+ T cells that can be induced ex vivo to produce HIV. We observed that the levels of infected resting human CD4+ T cells present in BLT mice are within the range of those observed circulating in patients undergoing suppressive ART. These results demonstrate the potential of humanized BLT mice as an attractive model for testing the in vivo efficacy of novel HIV eradication strategies.


Subject(s)
Disease Models, Animal , HIV Infections/virology , HIV/physiology , Virus Latency , Animals , Anti-HIV Agents , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV/drug effects , HIV/genetics , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Mice , Mice, SCID , Virus Latency/drug effects
16.
J Immunol ; 186(3): 1575-88, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21209280

ABSTRACT

Patr-AL is an expressed, non-polymorphic MHC class I gene carried by ∼50% of chimpanzee MHC haplotypes. Comparing Patr-AL(+) and Patr-AL(-) haplotypes showed Patr-AL defines a unique 125-kb genomic block flanked by blocks containing classical Patr-A and pseudogene Patr-H. Orthologous to Patr-AL are polymorphic orangutan Popy-A and the 5' part of human pseudogene HLA-Y, carried by ∼10% of HLA haplotypes. Thus, the AL gene alternatively evolved in these closely related species to become classical, nonclassical, and nonfunctional. Although differing by 30 aa substitutions in the peptide-binding α(1) and α(2) domains, Patr-AL and HLA-A*0201 bind overlapping repertoires of peptides; the overlap being comparable with that between the A*0201 and A*0207 subtypes differing by one substitution. Patr-AL thus has the A02 supertypic peptide-binding specificity. Patr-AL and HLA-A*0201 have similar three-dimensional structures, binding peptides in similar conformation. Although comparable in size and shape, the B and F specificity pockets of Patr-AL and HLA-A*0201 differ in both their constituent residues and contacts with peptide anchors. Uniquely shared by Patr-AL, HLA-A*0201, and other members of the A02 supertype are the absence of serine at position 9 in the B pocket and the presence of tyrosine at position 116 in the F pocket. Distinguishing Patr-AL from HLA-A*02 is an unusually electropositive upper face on the α(2) helix. Stimulating PBMCs from Patr-AL(-) chimpanzees with B cells expressing Patr-AL produced potent alloreactive CD8 T cells with specificity for Patr-AL and no cross-reactivity toward other MHC class I molecules, including HLA-A*02. In contrast, PBMCs from Patr-AL(+) chimpanzees are tolerant of Patr-AL.


Subject(s)
Conserved Sequence/immunology , Genes, Overlapping/immunology , HLA-A Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Polymorphism, Genetic , Animals , Binding Sites/genetics , Binding Sites/immunology , Cloning, Molecular , Conserved Sequence/genetics , HLA-A Antigens/chemistry , HLA-A Antigens/genetics , HLA-A2 Antigen , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Molecular Sequence Data , Pan troglodytes , Peptides/chemistry , Peptides/genetics , Protein Binding/genetics , Protein Binding/immunology , Receptors, Antigen, T-Cell/metabolism
17.
Viruses ; 15(4)2023 04 12.
Article in English | MEDLINE | ID: mdl-37112931

ABSTRACT

HIV resistance to the Tat inhibitor didehydro-cortistatin A (dCA) in vitro correlates with higher levels of Tat-independent viral transcription and a seeming inability to enter latency, which rendered resistant isolates more susceptible to CTL-mediated immune clearance. Here, we investigated the ability of dCA-resistant viruses to replicate in vivo using a humanized mouse model of HIV infection. Animals were infected with WT or two dCA-resistant HIV-1 isolates in the absence of dCA and followed for 5 weeks. dCA-resistant viruses exhibited lower replication rates compared to WT. Viral replication was suppressed early after infection, with viral emergence at later time points. Multiplex analysis of cytokine and chemokines from plasma samples early after infection revealed no differences in expression levels between groups, suggesting that dCA-resistance viruses did not elicit potent innate immune responses capable of blocking the establishment of infection. Viral single genome sequencing results from plasma samples collected at euthanasia revealed that at least half of the total number of mutations in the LTR region of the HIV genome considered essential for dCA evasion reverted to WT. These results suggest that dCA-resistant viruses identified in vitro suffer a fitness cost in vivo, with mutations in LTR and Nef pressured to revert to wild type.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Mice , Animals , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , HIV Infections/drug therapy , HIV-1/physiology , Virus Replication , HIV Long Terminal Repeat
18.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37159271

ABSTRACT

Respiratory syncytial virus (RSV) infection causes significant morbidity and mortality in infants, immunocompromised individuals, and older individuals. There is an urgent need for effective antivirals and vaccines for high-risk individuals. We used 2 complementary in vivo models to analyze RSV-associated human lung pathology and human immune correlates of protection. RSV infection resulted in widespread human lung epithelial damage, a proinflammatory innate immune response, and elicited a natural adaptive human immune response that conferred protective immunity. We demonstrated a key role for human T cells in controlling RSV infection. Specifically, primed human CD8+ T cells or CD4+ T cells effectively and independently control RSV replication in human lung tissue in the absence of an RSV-specific antibody response. These preclinical data support the development of RSV vaccines, which also elicit effective T cell responses to improve RSV vaccine efficacy.


Subject(s)
Respiratory Syncytial Virus Infections , Infant , Humans , Respiratory Syncytial Virus Infections/prevention & control , Lung/pathology , Antibodies, Viral , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes
19.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37317966

ABSTRACT

Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations. The broad-spectrum activity achieved by host targeting can be especially useful in combating emerging viruses and for treatment of diseases caused by multiple viral pathogens, such as opportunistic agents in immunosuppressed patients. We have developed a family of compounds that modulate sirtuin 2, an NAD+-dependent deacylase, and now report the properties of a member of that family, FLS-359. Biochemical and x-ray structural studies show that the drug binds to sirtuin 2 and allosterically inhibits its deacetylase activity. FLS-359 inhibits the growth of RNA and DNA viruses, including members of the coronavirus, orthomyxovirus, flavivirus, hepadnavirus, and herpesvirus families. FLS-359 acts at multiple levels to antagonize cytomegalovirus replication in fibroblasts, causing modest reductions in viral RNAs and DNA, together with a much greater reduction in infectious progeny, and it exhibits antiviral activity in humanized mouse models of infection. Our results highlight the potential of sirtuin 2 inhibitors as broad-spectrum antivirals and set the stage for further understanding of how host epigenetic mechanisms impact the growth and spread of viral pathogens.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Mice , Antiviral Agents/pharmacology , Sirtuin 2/genetics , RNA, Viral
20.
Nat Biotechnol ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563299

ABSTRACT

Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL