ABSTRACT
Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.
Subject(s)
Apoptosis , Glutathione Peroxidase/metabolism , Seizures/metabolism , Selenium/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Glutathione Peroxidase/genetics , HEK293 Cells , Humans , Hydrogen Peroxide/toxicity , Interneurons/metabolism , Lipid Peroxidation , Male , Mice , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Seizures/etiologyABSTRACT
Mammals form scars to quickly seal wounds and ensure survival by an incompletely understood mechanism1-5. Here we show that skin scars originate from prefabricated matrix in the subcutaneous fascia. Fate mapping and live imaging revealed that fascia fibroblasts rise to the skin surface after wounding, dragging their surrounding extracellular jelly-like matrix, including embedded blood vessels, macrophages and peripheral nerves, to form the provisional matrix. Genetic ablation of fascia fibroblasts prevented matrix from homing into wounds and resulted in defective scars, whereas placing an impermeable film beneath the skin-preventing fascia fibroblasts from migrating upwards-led to chronic open wounds. Thus, fascia contains a specialized prefabricated kit of sentry fibroblasts, embedded within a movable sealant, that preassemble together diverse cell types and matrix components needed to heal wounds. Our findings suggest that chronic and excessive skin wounds may be attributed to the mobility of the fascia matrix.
Subject(s)
Fascia/pathology , Wound Healing , Animals , Biomarkers/analysis , Cell Movement , Fascia/transplantation , Fibroblasts , Keloid , Mice, Inbred C57BLABSTRACT
BACKGROUND: Trastuzumab is the only first-line treatment targeted against the human epidermal growth factor receptor 2 (HER2) approved for patients with HER2-positive advanced gastric cancer. The impact of metabolic heterogeneity on trastuzumab treatment efficacy remains unclear. METHODS: Spatial metabolomics via high mass resolution imaging mass spectrometry was performed in pretherapeutic biopsies of patients with HER2-positive advanced gastric cancer in a prospective multicentre observational study. The mass spectra, representing the metabolic heterogeneity within tumour areas, were grouped by K-means clustering algorithm. Simpson's diversity index was applied to compare the metabolic heterogeneity level of individual patients. RESULTS: Clustering analysis revealed metabolic heterogeneity in HER2-positive gastric cancer patients and uncovered nine tumour subpopulations. High metabolic heterogeneity was shown as a factor indicating sensitivity to trastuzumab (p = 0.008) and favourable prognosis at trend level. Two of the nine tumour subpopulations associated with favourable prognosis and trastuzumab sensitivity, and one subpopulation associated with poor prognosis and trastuzumab resistance. CONCLUSIONS: This work revealed that tumour metabolic heterogeneity associated with prognosis and trastuzumab response based on tissue metabolomics of HER2-positive gastric cancer. Tumour metabolic subpopulations may provide an association with trastuzumab therapy efficacy. CLINICAL TRIAL REGISTRATION: The patient cohort was conducted from a multicentre observational study (VARIANZ;NCT02305043).
Subject(s)
Stomach Neoplasms , Humans , Trastuzumab/therapeutic use , Stomach Neoplasms/pathology , Prospective Studies , Receptor, ErbB-2/metabolism , Treatment Outcome , PrognosisABSTRACT
BACKGROUND: Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor receptor 2 (HER2). We present a deep-learning method for scoring microscopy images of GEA for the presence of HER2 overexpression. METHODS: Our method is based on convolutional neural networks (CNNs) trained on a rich dataset of 1602 patient samples and tested on an independent set of 307 patient samples. We additionally verified the CNN's generalisation capabilities with an independent dataset with 653 samples from a separate clinical centre. We incorporated an attention mechanism in the network architecture to identify the tissue regions, which are important for the prediction outcome. Our solution allows for direct automated detection of HER2 in immunohistochemistry-stained tissue slides without the need for manual assessment and additional costly in situ hybridisation (ISH) tests. RESULTS: We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our approach offers accurate predictions in cases that pathologists cannot resolve and that require additional ISH testing. We confirmed our findings in an independent dataset collected in a different clinical centre. The attention-based CNN exploits morphological information in microscopy images and is superior to a predictive model based on the staining intensity only. CONCLUSIONS: We demonstrate that our approach not only automates an important diagnostic process for GEA patients but also paves the way for the discovery of new morphological features that were previously unknown for GEA pathology.
Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Neural Networks, Computer , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , In Situ Hybridization , ErbB ReceptorsABSTRACT
BACKGROUND: Recent advances in omics techniques have allowed detailed genetic characterization of cortisol-producing adrenal adenoma (CPA). In contrast, the pathophysiology of CPAs has not been elucidated in detail on the level of tumor metabolic alterations. METHODS: The current study conducted a comprehensive mass spectrometry imaging (MSI) map of CPAs in relation to clinical phenotypes and immunohistochemical profiles of steroidogenic enzymes. The study cohort comprised 46 patients with adrenal tumors including CPAs (n 35) and nonfunctional adenomas (n 11). RESULTS: Severity of cortisol hypersecretion was significantly correlated with 29 metabolites (adjusted P 0.05). Adrenal androgens derived from the classic androgen pathway were inversely correlated with both cortisol secretion (rs 0.41, adjusted P 0.035) and CYP11B1 expression (rs 0.77, adjusted P 2.00E-08). The extent of cortisol excess and tumor CYP11B1 expression further correlated with serotonin (rs 0.48 and 0.62, adjusted P 0.008 and 2.41E-05). Tumor size was found to be correlated with abundance of 13 fatty acids (adjusted P 0.05) and negatively associated with 9 polyunsaturated fatty acids including phosphatidic acid 38:8 (rs 0.56, adjusted P 0.009). CONCLUSIONS: MSI reveals novel metabolic links between endocrine function and tumorigenesis, which will further support the understanding of CPA pathophysiology.
Subject(s)
Adenoma , Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Humans , Adrenocortical Adenoma/genetics , Adrenocortical Adenoma/metabolism , Adrenocortical Adenoma/pathology , Adrenal Cortex Neoplasms/metabolism , Hydrocortisone , Steroid 11-beta-Hydroxylase/geneticsABSTRACT
BACKGROUND: Correct tumor subtyping of primary renal tumors is essential for treatment decision in daily routine. Most of the tumors can be classified based on morphology alone. Nevertheless, some diagnoses are difficult, and further investigations are needed for correct tumor subtyping. Besides histochemical investigations, high-mass-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can detect new diagnostic biomarkers and hence improve the diagnostic. PATIENTS AND METHODS: Formalin-fixed paraffin embedded tissue specimens from clear cell renal cell carcinoma (ccRCC, n = 552), papillary renal cell carcinoma (pRCC, n = 122), chromophobe renal cell carcinoma (chRCC, n = 108), and renal oncocytoma (rO, n = 71) were analyzed by high-mass-resolution MALDI fourier-transform ion cyclotron resonance (FT-ICR) MSI. The SPACiAL pipeline was executed for automated co-registration of histological and molecular features. Pathway enrichment and pathway topology analysis were performed to determine significant differences between RCC subtypes. RESULTS: We discriminated the four histological subtypes (ccRCC, pRCC, chRCC, and rO) and established the subtype-specific pathways and metabolic profiles. rO showed an enrichment of pentose phosphate, taurine and hypotaurine, glycerophospholipid, amino sugar and nucleotide sugar, fructose and mannose, glycine, serine, and threonine pathways. ChRCC is defined by enriched pathways including the amino sugar and nucleotide sugar, fructose and mannose, glycerophospholipid, taurine and hypotaurine, glycine, serine, and threonine pathways. Pyrimidine, amino sugar and nucleotide sugar, glycerophospholipids, and glutathione pathways are enriched in ccRCC. Furthermore, we detected enriched phosphatidylinositol and glycerophospholipid pathways in pRCC. CONCLUSION: In summary, we performed a classification system with a mean accuracy in tumor discrimination of 85.13%. Furthermore, we detected tumor-specific biomarkers for the four most common primary renal tumors by MALDI-MSI. This method is a useful tool in differential diagnosis and biomarker detection.
Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Mannose , Kidney Neoplasms/metabolism , Taurine , Biomarkers, Tumor , Transcription Factors , Amino Sugars , LasersABSTRACT
The response to neoadjuvant therapy can vary widely between individual patients. Histopathological tumor regression grading (TRG) is a strong factor for treatment response and survival prognosis of esophageal adenocarcinoma (EAC) patients following neoadjuvant treatment and surgery. However, TRG systems are usually based on the estimation of residual tumor but do not consider stromal or metabolic changes after treatment. Spatial metabolomics analysis is a powerful tool for molecular tissue phenotyping but has not been used so far in the context of neoadjuvant treatment of esophageal cancer. We used imaging mass spectrometry to assess the potential of spatial metabolomics on tumor and stroma tissue for evaluating therapy response of neoadjuvant-treated EAC patients. With an accuracy of 89.7%, the binary classifier trained on spatial tumor metabolite data proved to be superior for stratifying patients when compared with histopathological response assessment, which had an accuracy of 70.5%. Sensitivities and specificities for the poor and favorable survival patient groups ranged from 84.9% to 93.3% using the metabolic classifier and from 62.2% to 78.1% using TRG. The tumor classifier was the only significant prognostic factor (HR 3.38, 95% CI 1.40-8.12, p = 0.007) when adjusted for clinicopathological parameters such as TRG (HR 1.01, 95% CI 0.67-1.53, p = 0.968) or stromal classifier (HR 1.86, 95% CI 0.81-4.25, p = 0.143). The classifier even allowed us to further stratify patients within the TRG1-3 categories. The underlying mechanisms of response to treatment have been figured out through network analysis. In summary, metabolic response evaluation outperformed histopathological response evaluation in our study with regard to prognostic stratification. This finding indicates that the metabolic constitution of the tumor may have a greater impact on patient survival than the quantity of residual tumor cells or the stroma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Subject(s)
Adenocarcinoma/drug therapy , Biomarkers, Tumor/metabolism , Energy Metabolism , Esophageal Neoplasms/drug therapy , Metabolome , Metabolomics , Neoadjuvant Therapy , Neoplasm Grading , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Chemoradiotherapy, Adjuvant , Chemotherapy, Adjuvant , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophagectomy , Germany , Humans , Machine Learning , Neoadjuvant Therapy/adverse effects , Neoadjuvant Therapy/mortality , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Switzerland , Time Factors , Treatment OutcomeABSTRACT
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) allows spatial analysis of proteins, metabolites, or small molecules from tissue sections. Here, we present the simultaneous generation and analysis of MALDI-MSI, whole-exome sequencing (WES), and RNA-sequencing data from the same formalin-fixed paraffin-embedded (FFPE) tissue sections. Genomic DNA and total RNA were extracted from (i) untreated, (ii) hematoxylin-eosin (HE) stained, and (iii) MALDI-MSI-analyzed FFPE tissue sections from three head and neck squamous cell carcinomas. MALDI-MSI data were generated by a time-of-flight analyzer prior to preprocessing and visualization. WES data were generated using a low-input protocol followed by detection of single-nucleotide variants (SNVs), tumor mutational burden, and mutational signatures. The transcriptome was determined using 3'-RNA sequencing and was examined for similarities and differences between processing stages. All data met the commonly accepted quality criteria. Besides SNVs commonly identified between differently processed tissues, FFPE-typical artifactual variants were detected. Tumor mutational burden was in the same range for tissues from the same patient and mutational signatures were highly overlapping. Transcriptome profiles showed high levels of correlation. Our data demonstrate that simultaneous molecular profiling of MALDI-MSI-processed FFPE tissue sections at the transcriptome and exome levels is feasible and reliable.
Subject(s)
Exome , Neoplasms , Humans , Paraffin Embedding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tissue Fixation/methods , Exome/genetics , Formaldehyde/chemistry , Exome Sequencing , Gene Expression Profiling , Biomarkers, Tumor , RNAABSTRACT
Matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) imaging mass spectrometry (MS) is a powerful technology used to analyze metabolites in various tissues. However, it faces significant challenges in studying adipose tissues. Poor matrix distribution and crystallization caused by excess liquid lipids on the surface of tissue sections hamper m/z species detection, an adverse effect that particularly presents in lipid-rich white adipose tissue (WAT). In this study, we integrated a simple and low-cost preparation step into the existing MALDI-FTICR imaging MS pipeline. The new method-referred to as filter paper application-is characterized by an easy sample handling and high reproducibility. The aforementioned filter paper is placed onto the tissue prior to matrix application in order to remove the layer of excess liquid lipids. Consequently, MALDI-FTICR imaging MS detection was significantly improved, resulting in a higher number of detected m/z species and higher ion intensities. After analyzing various durations of filter paper application, 30 s was found to be optimal, resulting in the detection of more than 3700 m/z species. Apart from the most common lipids found in WAT, other molecules involved in various metabolic pathways were detected, including nucleotides, carbohydrates, and amino acids. Our study is the first to propose a solution to a specific limitation of MALDI-FTICR imaging MS in investigating lipid-rich WAT. The filter paper approach can be performed quickly and is particularly effective for achieving uniform matrix distribution on fresh frozen WAT while maintaining tissue integrity. It thus helps to gain insight into the metabolism in WAT.
Subject(s)
Adipose Tissue, White , Lipids , Adipose Tissue, White/chemistry , Fourier Analysis , Lipids/analysis , Reproducibility of Results , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methodsABSTRACT
BACKGROUND: The standard treatment for patients with advanced HER2-positive gastric cancer is a combination of the antibody trastuzumab and platin-fluoropyrimidine chemotherapy. As some patients do not respond to trastuzumab therapy or develop resistance during treatment, the search for alternative treatment options and biomarkers to predict therapy response is the focus of research. We compared the efficacy of trastuzumab and other HER-targeting drugs such as cetuximab and afatinib. We also hypothesized that treatment-dependent regulation of a gene indicates its importance in response and that it can therefore be used as a biomarker for patient stratification. METHODS: A selection of gastric cancer cell lines (Hs746T, MKN1, MKN7 and NCI-N87) was treated with EGF, cetuximab, trastuzumab or afatinib for a period of 4 or 24 h. The effects of treatment on gene expression were measured by RNA sequencing and the resulting biomarker candidates were tested in an available cohort of gastric cancer patients from the VARIANZ trial or functionally analyzed in vitro. RESULTS: After treatment of the cell lines with afatinib, the highest number of regulated genes was observed, followed by cetuximab and trastuzumab. Although trastuzumab showed only relatively small effects on gene expression, BMF, HAS2 and SHB could be identified as candidate biomarkers for response to trastuzumab. Subsequent studies confirmed HAS2 and SHB as potential predictive markers for response to trastuzumab therapy in clinical samples from the VARIANZ trial. AREG, EREG and HBEGF were identified as candidate biomarkers for treatment with afatinib and cetuximab. Functional analysis confirmed that HBEGF is a resistance factor for cetuximab. CONCLUSION: By confirming HAS2, SHB and HBEGF as biomarkers for anti-HER therapies, we provide evidence that the regulation of gene expression after treatment can be used for biomarker discovery. TRIAL REGISTRATION: Clinical specimens of the VARIANZ study (NCT02305043) were used to test biomarker candidates.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Heparin-binding EGF-like Growth Factor/genetics , Hyaluronan Synthases/genetics , Proto-Oncogene Proteins/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Afatinib/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cetuximab/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression/drug effects , Humans , Receptor, ErbB-2/drug effects , Trastuzumab/pharmacologyABSTRACT
BACKGROUND & AIMS: HBV remains a global threat to human health. It remains incompletely understood how HBV self-restricts in the host during most adult infections. Thus, we performed multi-omics analyses to systematically interrogate HBV-host interactions and the life cycle of HBV. METHODS: RNA-sequencing and ribosome profiling were conducted with cell-based models for HBV replication and gene expression. The novel translational events or products hereby detected were then characterized, and functionally assessed in both cell and mouse models. Moreover, quasi-species analyses of HBV subpopulations were conducted with patients at immune tolerance or activation phases, using next- or third-generation sequencing. RESULTS: We identified EnhI-SL (Enhancer I-stem loop) as a new cis element in the HBV genome; mutations disrupting EnhI-SL were found to elevate viral polymerase expression. Furthermore, while re-discovering HpZ/P', a previously under-explored isoform of HBV polymerase, we also identified HBxZ, a novel short isoform of HBX. Having confirmed their existence, we functionally characterized them as potent suppressors of HBV gene expression and genome replication. Mechanistically, HpZ/P' was found to repress HBV gene expression partially by interacting with, and sequestering SUPV3L1. Activation of the host immune system seemed to reduce the abundance of HBV mutants deficient in HpZ/P' or with disruptions in EnhI-SL. Finally, SRSF2, a host RNA spliceosome protein that is downregulated by HBV, was found to promote the splicing of viral pre-genomic RNA and HpZ/P' biogenesis. CONCLUSION: This study has identified multiple self-restricting HBV-host interactions. In particular, SRSF2-HpZ/P' appeared to constitute another negative feedback mechanism in the HBV life cycle. Targeting host splicing machinery might thus represent a strategy to intervene in HBV-host interactions. LAY SUMMARY: There remain many unknowns about the natural history of HBV infection in adults. Herein, we identified new HBV-host mechanisms which could be responsible for self-restricting infections. Targeting these mechanisms could be a promising strategy for the treatment of HBV infections.
Subject(s)
Gene Products, pol/metabolism , Hepatitis B virus , Hepatitis B, Chronic , Host Microbial Interactions/immunology , Virus Replication , Animals , Drug Discovery , Genome, Viral/physiology , Hepatitis B virus/enzymology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Humans , Mice , Promoter Regions, Genetic , Protein Modification, Translational , RNA, Ribosomal, Self-Splicing/metabolism , RNA-Directed DNA Polymerase/metabolism , Serine-Arginine Splicing Factors/metabolism , Virus Replication/genetics , Virus Replication/immunologyABSTRACT
OBJECTIVE: Assessing the advantage of x-ray dark-field contrast over x-ray transmission contrast in radiography for the detection of developing radiation-induced lung damage in mice. METHODS: Two groups of female C57BL/6 mice (irradiated and control) were imaged obtaining both contrasts monthly for 28 weeks post irradiation. Six mice received 20 Gy of irradiation to the entire right lung sparing the left lung. The control group of six mice was not irradiated. A total of 88 radiographs of both contrasts were evaluated for both groups based on average values for two regions of interest, covering (irradiated) right lung and healthy left lung. The ratio of these average values, R, was distinguished between healthy and damaged lungs for both contrasts. The time-point when deviations of R from healthy lung exceeded 3σ was determined and compared among contrasts. The Wilcoxon-Mann-Whitney test was used to test against the null hypothesis that there is no difference between both groups. A selection of 32 radiographs was assessed by radiologists. Sensitivity and specificity were determined in order to compare the diagnostic potential of both contrasts. Inter-reader and intra-reader accuracy were rated with Cohen's kappa. RESULTS: Radiation-induced morphological changes of lung tissue caused deviations from the control group that were measured on average 10 weeks earlier with x-ray dark-field contrast than with x-ray transmission contrast. Sensitivity, specificity, and accuracy doubled using dark-field radiography. CONCLUSION: X-ray dark-field radiography detects morphological changes of lung tissue associated with radiation-induced damage earlier than transmission radiography in a pre-clinical mouse model. KEY POINTS: ⢠Significant deviations from healthy lung due to irradiation were measured after 16 weeks with x-ray dark-field radiography (p = 0.004). ⢠Significant deviations occur on average 10 weeks earlier for x-ray dark-field radiography in comparison to x-ray transmission radiography. ⢠Sensitivity and specificity doubled when using x-ray dark-field radiography instead of x-ray transmission radiography.
Subject(s)
Lung , Animals , Female , Lung/diagnostic imaging , Mice , Mice, Inbred C57BL , Radiography , Sensitivity and Specificity , X-RaysABSTRACT
BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.
Subject(s)
Autophagy-Related Protein 5/metabolism , Autophagy , Carcinoma, Pancreatic Ductal/metabolism , Cell Movement , Pancreatic Neoplasms/metabolism , Animals , Autophagy-Related Protein 5/deficiency , Autophagy-Related Protein 5/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/prevention & control , Carcinoma, Pancreatic Ductal/secondary , Cathepsins/genetics , Cathepsins/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Genes, ras , Heterozygote , Homozygote , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Signal Transduction , Tumor Burden , Tumor Cells, CulturedABSTRACT
Glutathione peroxidase 4 (GPX4) is unique as it is the only enzyme that can prevent detrimental lipid peroxidation in vivo by reducing lipid peroxides to the respective alcohols thereby stabilizing oxidation products of unsaturated fatty acids. During reticulocyte maturation, lipid peroxidation mediated by 15-lipoxygenase in humans and rabbits and by 12/15-lipoxygenase (ALOX15) in mice was considered the initiating event for the elimination of mitochondria but is now known to occur through mitophagy. Yet, genetic ablation of the Alox15 gene in mice failed to provide evidence for this hypothesis. We designed a different genetic approach to tackle this open conundrum. Since either other lipoxygenases or non-enzymatic autooxidative mechanisms may compensate for the loss of Alox15, we asked whether ablation of Gpx4 in the hematopoietic system would result in the perturbation of reticulocyte maturation. Quantitative assessment of erythropoiesis indices in the blood, bone marrow (BM) and spleen of chimeric mice with Gpx4 ablated in hematopoietic cells revealed anemia with an increase in the fraction of erythroid precursor cells and reticulocytes. Additional dietary vitamin E depletion strongly aggravated the anemic phenotype. Despite strong extramedullary erythropoiesis reticulocytes failed to mature and accumulated large autophagosomes with engulfed mitochondria. Gpx4-deficiency in hematopoietic cells led to systemic hepatic iron overload and simultaneous severe iron demand in the erythroid system. Despite extremely high erythropoietin and erythroferrone levels in the plasma, hepcidin expression remained unchanged. Conclusively, perturbed reticulocyte maturation in response to Gpx4 loss in hematopoietic cells thus causes ineffective erythropoiesis, a phenotype partially masked by dietary vitamin E supplementation.
Subject(s)
Erythropoiesis , Iron , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reticulocytes , Vitamin E , Animals , Homeostasis , Mice , RabbitsABSTRACT
The adrenal gland integrates catecholamine-producing neuroendocrine cells and steroid-producing cells with mesenchymal origin in a structured manner under one capsule and is a key regulator for vital bioactivity. In addition to adrenal-specific disease, dysregulation of adrenal hormones is associated with systemic effects, leading to undesirable metabolic and cardiovascular consequences. Mass spectrometry imaging (MSI) technique can simultaneously measure a broad range of biomolecules, including metabolites and hormones, which has enabled the study of tissue metabolic and hormone alterations in adrenal and adrenal-related diseases. Furthermore, this technique coupled with labeled immunohistochemistry staining has enabled the study of the pathophysiological adaptation of the adrenal gland under normal and abnormal conditions at different molecular levels. This review discusses the recent applications of in situ MSI in the adrenal gland. For example, the combination of formalin-fixed paraffin-embedded tissue microarray and MSI to tissues from patient cohorts has facilitated the discovery of clinically relevant prognostic biomolecules and generated promising hypotheses for new sights into physiology and pathophysiology of adrenal gland. MSI also has enabled the discovery of clinically significant tissue molecular (i. e., biomarker) and pathway changes in adrenal disease, particularly in adrenal tumors. In addition, MSI has advanced the ability to optimally identify and detect adrenal gland specific molecules. Thus, as a novel analytical methodology, MSI has provided unprecedented capabilities for in situ tissue study.
Subject(s)
Adrenal Glands/diagnostic imaging , Adrenal Glands/metabolism , Biomarkers/metabolism , Diagnostic Imaging/methods , Mass Spectrometry/methods , Adrenal Glands/pathology , Biomarkers/analysis , Humans , Immunohistochemistry/methods , Metabolome , PrognosisABSTRACT
The large-scale and label-free molecular characterization of single cells in their natural tissue habitat remains a major challenge in molecular biology. We present a method that integrates morphometric image analysis to delineate and classify individual cells with their single-cell-specific molecular profiles. This approach provides a new means to study spatial biological processes such as cancer field effects and the relationship between morphometric and molecular features.
Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Colon/cytology , Colon/pathology , Disease Models, Animal , Lipids/chemistry , Single-Cell Analysis , Stomach Neoplasms/pathology , SwineABSTRACT
Multimodal tissue analyses that combine two or more detection technologies provide synergistic value compared to single methods and are employed increasingly in the field of tissue-based diagnostics and research. Here, we report a technical pipeline that describes a combined approach of HER2/CEP17 fluorescence in situ hybridization (FISH) analysis with MALDI imaging on the very same section of formalin-fixed and paraffin-embedded (FFPE) tissue. FFPE biopsies and a tissue microarray of human gastroesophageal adenocarcinoma were analyzed by MALDI imaging. Subsequently, the very same section was hybridized by HER2/CEP17 FISH. We found that tissue morphology of both, the biopsies and the tissue microarray, was unaffected by MALDI imaging and the HER2 and CEP17 FISH signals were analyzable. In comparison with FISH analysis of samples without MALDI imaging, we observed no difference in terms of fluorescence signal intensity and gene copy number. Our combined approach revealed adenosine monophosphate, measured by MALDI imaging, as a prognostic marker. HER2 amplification, which was detected by FISH, is a stratifier between good and poor patient prognosis. By integrating both stratification parameters on the basis of our combined approach, we were able to strikingly improve the prognostic effect. Combining molecules detected by MALDI imaging with the gene copy number detected by HER2/CEP17 FISH, we found a synergistic effect, which enhances patient prognosis. This study shows that our combined approach allows the detection of genetic and metabolic properties from one very same FFPE tissue section, which are specific for HER2 and hence suitable for prognosis. Furthermore, this synergism might be useful for response prediction in tumors.
Subject(s)
Adenocarcinoma/diagnostic imaging , Gastrointestinal Neoplasms/diagnostic imaging , In Situ Hybridization, Fluorescence , Multimodal Imaging , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenosine Monophosphate/metabolism , Formaldehyde , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/mortality , Genes, erbB-2 , Germany/epidemiology , Humans , Paraffin Embedding , PrognosisABSTRACT
Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combining X-ray (two modes) and fluorescence imaging (three modes) techniques for time-resolved in vivo and spatially resolved ex vivo visualization of mouse lungs during pulmonary NP delivery. Liquid mixtures of iodine (contrast agent for X-ray) and/or (nano)particles (X-ray absorbing and/or fluorescent) are delivered to different regions of the lung via intratracheal instillation, nasal aspiration, and ventilator-assisted aerosol inhalation. It is demonstrated that in vivo propagation-based phase-contrast X-ray imaging elucidates the dynamic process of pulmonary NP delivery, while ex vivo fluorescence imaging (e.g., tissue-cleared light sheet fluorescence microscopy) reveals the quantitative 3D drug/particle distribution throughout the entire lung with cellular resolution. The novel and complementary information from this imaging platform unveils the dynamics and mechanisms of pulmonary NM/NP delivery and deposition for each of the delivery routes, which provides guidance on optimizing pulmonary delivery techniques and novel-designed NM for targeting and efficacy.
Subject(s)
Drug Delivery Systems/methods , Lung/metabolism , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Female , Lung/diagnostic imaging , Mice , Mice, Inbred C57BL , Microscopy, FluorescenceABSTRACT
BACKGROUND/OBJECTIVES: Individuals carrying loss-of-function gene mutations for the adipocyte hormone leptin are morbidly obese, but respond favorably to replacement therapy. Recombinant leptin is however largely ineffective for the vast majority of obese individuals due to leptin resistance. One theory underlying leptin resistance is impaired leptin transport across the blood-brain-barrier (BBB). Here, we aim to gain new insights into the mechanisms of leptin BBB transport, and its role in leptin resistance. METHODS: We developed a novel tool for visualizing leptin transport using infrared fluorescently labeled leptin, combined with tissue clearing and light-sheet fluorescence microscopy. We corroborated these data using western blotting. RESULTS: Using 3D whole brain imaging, we display comparable leptin accumulation in circumventricular organs of lean and obese mice, predominantly in the choroid plexus (CP). Protein quantification revealed comparable leptin levels in microdissected mediobasal hypothalami (MBH) of lean and obese mice (p = 0.99). We further found increased leptin receptor expression in the CP (p = 0.025, p = 0.0002) and a trend toward elevated leptin protein levels in the MBH (p = 0.17, p = 0.078) of obese mice undergoing weight loss interventions by calorie restriction or exendin-4 treatment. CONCLUSIONS: Overall, our findings suggest a crucial role for the CP in controlling the transport of leptin into the cerebrospinal fluid and from there to target areas such as the MBH, potentially mediated via the leptin receptor. Similar leptin levels in circumventricular organs and the MBH of lean and obese mice further suggest intact leptin BBB transport in leptin resistant mice.
Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Leptin/metabolism , Mice, Obese/metabolism , Obesity, Morbid/metabolism , Animals , Biological Transport , Blood-Brain Barrier/diagnostic imaging , Blotting, Western , Brain/diagnostic imaging , Disease Models, Animal , Fluorescence , HEK293 Cells , Humans , Imaging, Three-Dimensional , Mice , Molecular ImagingABSTRACT
Metabolic alterations have implications in a spectrum of tissue functions and disease. Aided by novel molecular biological and computational tools, our understanding of physiological and pathological processes underpinning endocrine and endocrine-related disease has significantly expanded over the last decade. Herein, we focus on novel metabolomics-related methodologies in adrenal research: in situ metabolomics by mass spectrometry imaging, steroid metabolomics by gas and liquid chromatography-mass spectrometry, energy pathway metabologenomics by liquid chromatography-mass spectrometry-based metabolomics of Krebs cycle intermediates, and cellular reprogramming to generate functional steroidogenic cells and hence to modulate the steroid metabolome. All four techniques to assess and/or modulate the metabolome in biological systems provide tremendous opportunities to manage neoplastic and non-neoplastic disease of the adrenal glands in the era of precision medicine. In this context, we discuss emerging clinical applications and/or promising metabolic-driven research towards diagnostic, prognostic, predictive and therapeutic biomarkers in tumours arising from the adrenal gland and extra-adrenal paraganglia as well as modern approaches to delineate and reprogram adrenal metabolism.