Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 614(7946): 118-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36697822

ABSTRACT

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Subject(s)
Diabetes Mellitus, Experimental , Insulin , Lipid Metabolism , Peripheral Nervous System Diseases , Serine , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Glycine/metabolism , Insulin/metabolism , Peripheral Nervous System Diseases/metabolism , Serine/metabolism , Diet, High-Fat , Adiposity , Sphingolipids/metabolism , Small Fiber Neuropathy , Dyslipidemias
2.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442424

ABSTRACT

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Subject(s)
Adipocytes, Brown/metabolism , Forkhead Box Protein O1/metabolism , Lipolysis , Mechanistic Target of Rapamycin Complex 2/metabolism , Sirtuins/metabolism , Adipocytes, Brown/cytology , Animals , Forkhead Box Protein O1/genetics , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Transgenic , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Sirtuins/genetics
3.
Nature ; 586(7831): 790-795, 2020 10.
Article in English | MEDLINE | ID: mdl-32788725

ABSTRACT

Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Serine/deficiency , Sphingolipids/chemistry , Sphingolipids/metabolism , Alanine/biosynthesis , Alanine/metabolism , Alanine/pharmacology , Animals , Cell Adhesion/drug effects , Cell Division/drug effects , Diet , Female , Glycine/biosynthesis , Glycine/deficiency , Glycine/metabolism , Glycine/pharmacology , HCT116 Cells , Humans , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Mice , Mitochondria/metabolism , Neoplasms/drug therapy , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Phosphoglycerate Dehydrogenase/metabolism , Pyruvic Acid/metabolism , Serine/blood , Serine/pharmacology , Serine C-Palmitoyltransferase/antagonists & inhibitors , Serine C-Palmitoyltransferase/metabolism , Spheroids, Cellular/pathology , Sphingolipids/biosynthesis , Stress, Physiological/drug effects , Xenograft Model Antitumor Assays
4.
J Biol Chem ; 300(3): 105702, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301896

ABSTRACT

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid) is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and branched-chain α-ketoacid levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here, we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show that BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly sixfold less potent than the prototypical uncoupler 2,4-dinitrophenol and phenocopies 2,4-dinitrophenol in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest that the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.


Subject(s)
Lipogenesis , Metabolic Diseases , Mitochondrial Membranes , Protein Kinase Inhibitors , Reactive Oxygen Species , Humans , 2,4-Dinitrophenol/pharmacology , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Lipogenesis/drug effects , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Animals , Mice , Rats , Cell Line , Mitochondrial Membranes/drug effects , Cells, Cultured
6.
Mol Cell ; 64(4): 774-789, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27840026

ABSTRACT

For many years, a connection between circadian clocks and cancer has been postulated. Here we describe an unexpected function for the circadian repressor CRY2 as a component of an FBXL3-containing E3 ligase that recruits T58-phosphorylated c-MYC for ubiquitylation. c-MYC is a critical regulator of cell proliferation; T58 is central in a phosphodegron long recognized as a hotspot for mutation in cancer. This site is also targeted by FBXW7, although the full machinery responsible for its turnover has remained obscure. CRY1 cannot substitute for CRY2 in promoting c-MYC degradation. Their unique functions may explain prior conflicting reports that have fueled uncertainty about the relationship between clocks and cancer. We demonstrate that c-MYC is a target of CRY2-dependent protein turnover, suggesting a molecular mechanism for circadian control of cell growth and a new paradigm for circadian protein degradation.


Subject(s)
Cell Transformation, Neoplastic/genetics , Circadian Clocks/genetics , Cryptochromes/genetics , F-Box Proteins/genetics , Gene Expression Regulation, Neoplastic , Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Circadian Rhythm/genetics , Cryptochromes/chemistry , Cryptochromes/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Cullin Proteins/metabolism , F-Box Proteins/chemistry , F-Box Proteins/metabolism , Fibroblasts , HEK293 Cells , Humans , Lymphoma/metabolism , Lymphoma/mortality , Lymphoma/pathology , Mice , Mice, Knockout , Models, Molecular , Protein Stability , Protein Structure, Secondary , Proteolysis , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , S-Phase Kinase-Associated Proteins/chemistry , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Signal Transduction , Survival Analysis
7.
Semin Cell Dev Biol ; 108: 65-71, 2020 12.
Article in English | MEDLINE | ID: mdl-32201132

ABSTRACT

Lipids play important roles in biology that include structural compartmentation as membranes, energy storage, and regulatory functions as signaling molecules. These molecules can be obtained via the surrounding environment (e.g. diet) or synthesized de novo. Fatty acid synthesis is an energetically demanding process and must therefore be tightly regulated to balance fatty acid availability with the functional and energetic needs of cells and tissues. Here we review key aspects of de novo lipogenesis (DNL) in mammalian systems. We highlight key nodes in the pathway that are used for quantitation of lipogenic fluxes and regulation of fatty acid diversity across tissues. Next, we discuss key aspects of DNL function in the major lipogenic tissues of mammals: liver, white adipose tissue (WAT), and brown adipose tissue (BAT), highlighting recent molecular discoveries that suggest potential roles for tissue specific DNL. Finally, we propose critical questions that will be important to address using the advanced approaches for DNL quantitation described herein.


Subject(s)
Adipose Tissue/metabolism , Lipogenesis , Liver/metabolism , Animals , Fatty Acids/metabolism , Homeostasis , Humans , Isotope Labeling
8.
N Engl J Med ; 381(15): 1422-1433, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31509666

ABSTRACT

BACKGROUND: Identifying mechanisms of diseases with complex inheritance patterns, such as macular telangiectasia type 2, is challenging. A link between macular telangiectasia type 2 and altered serine metabolism has been established previously. METHODS: Through exome sequence analysis of a patient with macular telangiectasia type 2 and his family members, we identified a variant in SPTLC1 encoding a subunit of serine palmitoyltransferase (SPT). Because mutations affecting SPT are known to cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), we examined 10 additional persons with HSAN1 for ophthalmologic disease. We assayed serum amino acid and sphingoid base levels, including levels of deoxysphingolipids, in patients who had macular telangiectasia type 2 but did not have HSAN1 or pathogenic variants affecting SPT. We characterized mice with low serine levels and tested the effects of deoxysphingolipids on human retinal organoids. RESULTS: Two variants known to cause HSAN1 were identified as causal for macular telangiectasia type 2: of 11 patients with HSAN1, 9 also had macular telangiectasia type 2. Circulating deoxysphingolipid levels were 84.2% higher among 125 patients with macular telangiectasia type 2 who did not have pathogenic variants affecting SPT than among 94 unaffected controls. Deoxysphingolipid levels were negatively correlated with serine levels, which were 20.6% lower than among controls. Reduction of serine levels in mice led to increases in levels of retinal deoxysphingolipids and compromised visual function. Deoxysphingolipids caused photoreceptor-cell death in retinal organoids, but not in the presence of regulators of lipid metabolism. CONCLUSIONS: Elevated levels of atypical deoxysphingolipids, caused by variant SPTLC1 or SPTLC2 or by low serine levels, were risk factors for macular telangiectasia type 2, as well as for peripheral neuropathy. (Funded by the Lowy Medical Research Institute and others.).


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Mutation , Retinal Telangiectasis/genetics , Serine C-Palmitoyltransferase/genetics , Serine/metabolism , Sphingolipids/metabolism , Adult , Aged , Animals , DNA Mutational Analysis , Disease Models, Animal , Exome/genetics , Female , Hereditary Sensory and Autonomic Neuropathies/complications , Hereditary Sensory and Autonomic Neuropathies/metabolism , Humans , Lipid Metabolism , Macula Lutea/pathology , Male , Mice , Middle Aged , Pedigree , Retinal Telangiectasis/complications , Retinal Telangiectasis/metabolism , Risk Factors , Serine/blood , Sphingosine/analogs & derivatives , Sphingosine/analysis , Young Adult
9.
J Pediatr Gastroenterol Nutr ; 72(4): e90-e96, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33399331

ABSTRACT

OBJECTIVES: We sought to evaluate the relevance of pediatric dairy fat recommendations for children at risk for nonalcoholic fatty liver disease (NAFLD) by studying the association between dairy fat intake and the amount of liver fat. The effects of dairy fat may be mediated by odd chain fatty acids (OCFA), such as pentadecanoic acid (C15:0), and monomethyl branched chain fatty acids (BCFA), such as iso-heptadecanoic acid (iso-C17:0). Therefore, we also evaluated the association between plasma levels of OCFA and BCFA with the amount of liver fat. METHODS: Observational, cross-sectional, community-based sample of 237 children ages 8 to 17. Dairy fat intake was assessed by 3 24-hour dietary recalls. Plasma fatty acids were measured by gas chromatography-mass spectrometry. Main outcome was hepatic steatosis measured by whole liver magnetic resonance imaging proton density fat fraction (MRI-PDFF). RESULTS: Median dairy fat intake was 10.6 grams/day (range 0.0--44.5 g/day). Median liver MRI-PDFF was 4.5% (range 0.9%-45.1%). Dairy fat intake was inversely correlated with liver MRI-PDFF (r = -0.162; P = .012). In multivariable log linear regression, plasma C15:0 and iso-C17:0 were inverse predictors of liver MRI-PDFF (B = -0.247, P = 0.048; and B = -0.234, P = 0.009). CONCLUSIONS: Dairy fat intake, plasma C15:0, and plasma iso-C17:0 were inversely correlated with hepatic steatosis in children. These hypothesis-generating findings should be tested through clinical trials to better inform dietary guidelines.


Subject(s)
Fatty Acids , Non-alcoholic Fatty Liver Disease , Adolescent , Child , Cross-Sectional Studies , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging , Non-alcoholic Fatty Liver Disease/diagnostic imaging
10.
Proc Natl Acad Sci U S A ; 115(30): 7819-7824, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29915037

ABSTRACT

Insulin increases glucose uptake into adipose tissue and muscle by increasing trafficking of the glucose transporter Glut4. In cultured adipocytes, the exocytosis of Glut4 relies on activation of the small G protein RalA by insulin, via inhibition of its GTPase activating complex RalGAP. Here, we evaluate the role of RalA in glucose uptake in vivo with specific chemical inhibitors and by generation of mice with adipocyte-specific knockout of RalGAPB. RalA was profoundly activated in brown adipose tissue after feeding, and its inhibition prevented Glut4 exocytosis. RalGAPB knockout mice with diet-induced obesity were protected from the development of metabolic disease due to increased glucose uptake into brown fat. Thus, RalA plays a crucial role in glucose transport in adipose tissue in vivo.


Subject(s)
Adipose Tissue, Brown/metabolism , Glucose/metabolism , Homeostasis , ral GTP-Binding Proteins/metabolism , 3T3-L1 Cells , Adipose Tissue, Brown/pathology , Animals , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Deletion , Glucose/genetics , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Mice , Mice, Knockout , ral GTP-Binding Proteins/genetics
11.
Nat Chem Biol ; 14(11): 1021-1031, 2018 11.
Article in English | MEDLINE | ID: mdl-30327559

ABSTRACT

Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but are thought to be primarily diet derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity influencing acyl-chain diversity in the lipidome.


Subject(s)
Adipose Tissue/enzymology , Amino Acids, Branched-Chain/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/biosynthesis , Obesity/enzymology , 3T3 Cells , Adipocytes/cytology , Animals , CRISPR-Cas Systems , Carnitine O-Acetyltransferase/metabolism , Cytosol/metabolism , Female , Hypoxia , Lentivirus/genetics , Lipogenesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , RNA, Small Interfering/metabolism
12.
Nat Chem Biol ; 12(1): 15-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26571352

ABSTRACT

Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Amino Acids, Branched-Chain/metabolism , Lipogenesis , Obesity/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , 3T3-L1 Cells/drug effects , Acetyl Coenzyme A/metabolism , Adipocytes/drug effects , Adipogenesis/physiology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Base Sequence , Cell Differentiation/drug effects , Cell Differentiation/physiology , Humans , Mice , Molecular Sequence Data , Obesity/surgery , Tricarboxylic Acids/metabolism , Vitamin B 12/pharmacology
13.
Nature ; 488(7410): 178-84, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22797518

ABSTRACT

Alterations in intestinal microbiota composition are associated with several chronic conditions, including obesity and inflammatory diseases. The microbiota of older people displays greater inter-individual variation than that of younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed groups, correlating with residence location in the community, day-hospital, rehabilitation or in long-term residential care. However, clustering of subjects by diet separated them by the same residence location and microbiota groupings. The separation of microbiota composition significantly correlated with measures of frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. Loss of community-associated microbiota correlated with increased frailty. Collectively, the data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.


Subject(s)
Aging/physiology , Diet/statistics & numerical data , Feces/microbiology , Health Status , Intestines/microbiology , Metagenome/physiology , Aged , Aged, 80 and over , Cohort Studies , Diet Surveys , Fruit , Geriatric Assessment , Health , Health Surveys , Homes for the Aged , Hospitals, Community , Humans , Meat , Rehabilitation Centers , Surveys and Questionnaires , Vegetables
14.
J Biol Chem ; 291(27): 14274-14284, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27189937

ABSTRACT

Metabolic reprogramming is emerging as a hallmark of the innate immune response, and the dynamic control of metabolites such as succinate serves to facilitate the execution of inflammatory responses in macrophages and other immune cells. Immunoresponsive gene 1 (Irg1) expression is induced by inflammatory stimuli, and its enzyme product cis-aconitate decarboxylase catalyzes the production of itaconate from the tricarboxylic acid cycle. Here we identify an immunometabolic regulatory pathway that links Irg1 and itaconate production to the succinate accumulation that occurs in the context of innate immune responses. Itaconate levels and Irg1 expression correlate strongly with succinate during LPS exposure in macrophages and non-immune cells. We demonstrate that itaconate acts as an endogenous succinate dehydrogenase inhibitor to cause succinate accumulation. Loss of itaconate production in activated macrophages from Irg1(-/-) mice decreases the accumulation of succinate in response to LPS exposure. This metabolic network links the innate immune response and tricarboxylic acid metabolism to function of the electron transport chain.


Subject(s)
Hydro-Lyases/physiology , Succinate Dehydrogenase/antagonists & inhibitors , Succinates/pharmacology , Succinic Acid/metabolism , Animals , Cell Line , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice
15.
Biochim Biophys Acta ; 1830(3): 2583-90, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23153904

ABSTRACT

BACKGROUND: Chronic exposure to hyperglycaemic conditions has been shown to have detrimental effects on beta cell function. The resulting glucotoxicity is a contributing factor to the development of type 2 diabetes. The objective of this study was to combine a metabolomics approach with functional assays to gain insight into the mechanism by which glucotoxicity exerts its effects. METHODS: The BRIN-BD11 and INS-1E beta cell lines were cultured in 25 mM glucose for 20 h to mimic glucotoxic effects. PDK-2 protein expression, intracellular glutathione levels and the change in mitochondrial membrane potential and intracellular calcium following glucose stimulation were determined. Metabolomic analysis of beta cell metabolite extracts was performed using GC-MS, 1H NMR and 13C NMR. RESULTS: Conditions to mimic glucotoxicity were established and resulted in no loss of cellular viability in either cell line while causing a decrease in insulin secretion. Metabolomic analysis of beta cells following exposure to high glucose revealed a change in amino acids, an increase in glucose and a decrease in phospho-choline, n-3 and n-6 PUFAs during glucose stimulated insulin secretion relative to cells cultured under control conditions. However, no changes in calcium handling or mitochondrial membrane potential were evident. CONCLUSIONS: Results indicate that a decrease in TCA cycle metabolism in combination with an alteration in fatty acid composition and phosphocholine levels may play a role in glucotoxicity induced impairment of glucose stimulated insulin secretion. GENERAL SIGNIFICANCE: Alterations in certain metabolic pathways play a role in glucotoxicity in the pancreatic beta cell.


Subject(s)
Citric Acid Cycle/drug effects , Glucose/toxicity , Insulin-Secreting Cells/drug effects , Metabolomics , Phosphorylcholine/metabolism , Amino Acids/metabolism , Animals , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Fatty Acids/metabolism , Gene Expression/drug effects , Glucose/metabolism , Glutathione/metabolism , Insulin/biosynthesis , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Rats
16.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798427

ABSTRACT

Objective: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. Methods: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. Results: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. Conclusion: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.

17.
Article in English | MEDLINE | ID: mdl-38277883

ABSTRACT

Breastfeeding is an important determinant of infant health and there is immense interest in understanding its metabolite composition so that key beneficial components can be identified. The aim of this research was to measure the fatty acid composition of human milk in an Irish cohort where we examined changes depending on lactation stage and gestational weight gain trajectory. Utilizing a chromatography approach optimal for isomer separation, we identified 44 individual fatty acid species via GCMS and showed that monomethyl branched-chain fatty acids(mmBCFA's), C15:0 and C16:1 are lower in women with excess gestational weight gain versus low gestational weight gain. To further explore the potential contribution of the activity of endogenous metabolic pathways to levels of these fatty acids in milk, we administered D2O to C57BL/6J dams fed a purified lard based high fat diet (HFD) or low-fat diet during gestation and quantified the total and de novo synthesized levels of fatty acids in their milk. We found that de novo synthesis over three days can account for between 10 and 50 % of mmBCFAs in milk from dams on the low-fat diet dependent on the branched-chain fatty acid species. However, HFD fed mice had significantly decreased de novo synthesized fatty acids in milk resulting in lower total mmBCFAs and medium chain fatty acid levels. Overall, our findings highlight the diverse fatty acid composition of human milk and that human milk mmBCFA levels differ between gestational weight gain phenotypes. In addition, our data indicates that de novo synthesis contributes to mmBCFA levels in mice milk and thus may also be a contributory factor to mmBCFA levels in human milk. Given emerging data indicating mmBCFAs may be beneficial components of milk, this study contributes to our knowledge around the phenotypic factors that may impact their levels.


Subject(s)
Fatty Acids , Gestational Weight Gain , Milk, Human , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Female , Animals , Fatty Acids/metabolism , Fatty Acids/analysis , Mice , Pregnancy , Mice, Inbred C57BL , Adult , Lactation/metabolism
18.
J Vis Exp ; (195)2023 05 12.
Article in English | MEDLINE | ID: mdl-37246886

ABSTRACT

Fatty acid synthesis is a complex and highly energy demanding metabolic pathway with important functional roles in the control of whole-body metabolic homeostasis and other physiological and pathological processes. Contrary to other key metabolic pathways, such as glucose disposal, fatty acid synthesis is not routinely functionally assessed, leading to incomplete interpretations of metabolic status. In addition, there is a lack of publicly available detailed protocols suitable for newcomers in the field. Here, we describe an inexpensive quantitative method utilizing deuterium oxide and gas chromatography mass spectrometry (GCMS) for the analysis of total fatty acid de novo synthesis in brown adipose tissue in vivo. This method measures the synthesis of the products of fatty acid synthase independently of a carbon source, and it is potentially useful for virtually any tissue, in any mouse model, and under any external perturbation. Details on the sample preparation for GCMS and downstream calculations are provided. We focus on the analysis of brown fat due to its high levels of de novo fatty acid synthesis and critical roles in maintaining metabolic homeostasis.


Subject(s)
Adipose Tissue, Brown , Fatty Acids , Mice , Animals , Adipose Tissue, Brown/metabolism , Deuterium Oxide , Fatty Acids/metabolism , Lipogenesis , Glucose/metabolism , Adipose Tissue/metabolism
19.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645724

ABSTRACT

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids (BCKAs) are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and BCKA levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly five-fold less potent than the prototypical uncoupler 2,4-dinitrophenol (DNP), and phenocopies DNP in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.

20.
J Clin Invest ; 133(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-37115691

ABSTRACT

Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.


Subject(s)
Diabetic Retinopathy , Induced Pluripotent Stem Cells , Retinal Telangiectasis , Humans , Induced Pluripotent Stem Cells/metabolism , Retinal Telangiectasis/metabolism , Retinal Telangiectasis/pathology , Diabetic Retinopathy/metabolism , Mitochondria/metabolism , Epithelial Cells/metabolism , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL