ABSTRACT
Tuberculosis (TB) and malaria remain serious threats to global health. Bacillus Calmette-Guerin (BCG), the only licensed vaccine against TB protects against severe disseminated forms of TB in infants but shows poor efficacy against pulmonary TB in adults. Co-infections have been reported as one of the factors implicated in vaccine inefficacy. Given the geographical overlap of malaria and TB in areas where BCG vaccination is routinely administered, we hypothesized that virulence-dependent co-infection with Plasmodium species could alter the BCG-specific immune responses thus resulting in failure to protect against Mycobacterium tuberculosis. We compared virulent Plasmodium berghei and non-virulent Plasmodium chabaudi, their effects on B cells, effector and memory T cells, and the outcome on BCG-induced efficacy against M. tuberculosis infection. We demonstrate that malaria co-infection modulates both B- and T-cell immune responses but does not significantly alter the ability of the BCG vaccine to inhibit the growth of M. tuberculosis irrespective of parasite virulence. This malaria-driven immune regulation may have serious consequences in the early clinical trials of novel vaccines, which rely on vaccine-specific T-cell responses to screen novel vaccines for progression to the more costly vaccine efficacy trials.
Subject(s)
BCG Vaccine/immunology , Host-Parasite Interactions/immunology , Host-Pathogen Interactions/immunology , Immunogenicity, Vaccine , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/prevention & control , Tuberculosis/prevention & control , Animals , Apoptosis , CD4 Lymphocyte Count , Disease Models, Animal , Female , Humans , Malaria/immunology , Malaria/parasitology , Memory T Cells/immunology , Memory T Cells/metabolism , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tuberculosis Vaccines/immunology , VaccinationABSTRACT
TNF signalling through TNFRp55 and TNFRp75, and receptor shedding is important for immune activation and regulation. TNFRp75 deficiency leads to improved control of Mycobacterium tuberculosis (M. tuberculosis) infection, but the effects of early innate immune events in this process are unclear. We investigated the role of TNFRp75 on cell activation and apoptosis of alveolar macrophages and neutrophils during M. tuberculosis and M. bovis BCG infection. We found increased microbicidal activity against M. tuberculosis occurred independently of IFNy and NO generation, and displayed an inverse correlation with alveolar macrophages (AMs) apoptosis. Both M. tuberculosis and M. bovis BCG induced higher expression of MHC-II in TNFRp75-/- AMs; however, M bovis BCG infection did not alter AM apoptosis in the absence of TNFRp75. Pulmonary concentrations of CCL2, CCL3 and IL-1ß were increased in TNFRp75-/- mice during M, bovis BCG infection, but had no effect on neutrophil responses. Thus, TNFRp75-dependent regulation of mycobacterial replication is virulence dependent and occurs independently of early alveolar macrophage apoptosis and neutrophil responses.
Subject(s)
BCG Vaccine/immunology , Macrophages, Alveolar/immunology , Neutrophils/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Tuberculosis, Bovine/immunology , Tuberculosis/immunology , Animals , Apoptosis/immunology , Cattle , Cells, Cultured , Female , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Signal Transduction/immunology , Tumor Necrosis Factor Decoy Receptors/immunology , Virulence/immunologyABSTRACT
The phenothiazine-derived antipsychotic drugs, such as chlorpromazine and thioridazine, are bactericidal against drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis, but produce undesirable side effects at clinically relevant doses. We have previously modified four novel phenothiazines and maintained their antimycobacterial activity. This study evaluated the pharmacological and toxicity profiles of these novel non-neuroleptic phenothiazines, PTZ3, PTZ4, PTZ31 and PTZ32, for their metabolic stability, kinetic solubility and potential cytotoxic effects in vitro. To further support the safet use of these drug candidates, the in vivo pharmacological and toxicity profiles were assessed in C57BL/6 mice via single or repeated oral gavage. In acute toxicity studies, all four modified phenothiazines showed favourable safety in mice. When treated daily with 100â¯mg/kg of PTZ3 and PTZ4 for 2 weeks, mice displayed no signs of toxicity. Alternatively, treatment with PTZ31 resulted in 20% mortality with no toxicity evident in biochemical or histological analysis, while exposure to PTZ32 resulted in a 45% survival with increased serum concentrations of uric acid and alkaline phosphatase. The combined non-neuroleptic and antimycobacterial effects of the novel phenothiazines PTZ3, PTZ4, PTZ31 and PTZ32 demonstrated favourable pharmacological and toxicity profiles in this study, highlight the potential of these compounds as suitable anti-tuberculosis drug candidates.
Subject(s)
Antitubercular Agents/toxicity , Macrophages/drug effects , Phenothiazines/toxicity , Animals , Antitubercular Agents/administration & dosage , Cells, Cultured , Female , Mice , Phenothiazines/administration & dosage , Primary Cell Culture , Thioridazine/administration & dosage , Thioridazine/toxicity , Toxicity Tests, Acute , Toxicity Tests, SubacuteABSTRACT
Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Memory T Cells , Pandemics , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
ABSTRACT
We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Overall, in the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: The study has been registered to the South African National Clinical Trial Registry (SANCTR): DOH-27-012022-7841. The approval letter from SANCTR has been provided in the up-loaded documents.
ABSTRACT
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
ABSTRACT
Background: We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. Methods: A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. Results: No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Conclusion: In the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: South African National Clinical Trial Registry (SANCR): DOH-27-012022-7841. Funding: South African Medical Research Council (SAMRC) and South African Department of Health (SA DoH).