Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
Add more filters

Publication year range
1.
J Med Virol ; 96(7): e29783, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965890

ABSTRACT

Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.


Subject(s)
COVID-19 , Intestinal Mucosa , SARS-CoV-2 , Tight Junctions , Virus Replication , Humans , SARS-CoV-2/pathogenicity , Caco-2 Cells , COVID-19/virology , COVID-19/pathology , Intestinal Mucosa/virology , Intestinal Mucosa/pathology , Tight Junctions/virology , Alanine/analogs & derivatives , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Antiviral Agents/pharmacology , HT29 Cells , Occludin/metabolism , Occludin/genetics , Adenosine Monophosphate/analogs & derivatives
2.
Microb Cell Fact ; 23(1): 213, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061103

ABSTRACT

BACKGROUND: Acetogens, a diverse group of anaerobic autotrophic bacteria, are promising whole-cell biocatalysts that fix CO2 during their growth. However, because of energetic constraints, acetogens exhibit slow growth and the product spectrum is often limited to acetate. Enabling acetogens to form more valuable products such as volatile fatty acids during autotrophic growth is imperative for cementing their place in the future carbon neutral industry. Co-cultivation of strains with different capabilities has the potential to ease the limiting energetic constraints. The lactate-mediated co-culture of an Acetobacterium woodii mutant strain, capable of lactate production, with the Clostridium drakei SL1 type strain can produce butyrate and hexanoate. In this study, the preceding co-culture is characterized by comparison of monocultures and different co-culture approaches. RESULTS: C. drakei grew with H2 + CO2 as main carbon and energy source and thrived when further supplemented with D-lactate. Gas phase components and lactate were consumed in a mixotrophic manner with acetate and butyrate as main products and slight accumulation of hexanoate. Formate was periodically produced and eventually consumed by C. drakei. A lactate-mediated co-culture of the A. woodii [PbgaL_ldhD_NFP] strain, engineered for autotrophic lactate production, and C. drakei produced up to 4 ± 1.7 mM hexanoate and 18.5 ± 5.8 mM butyrate, quadrupling and doubling the respective titers compared to a non-lactate-mediated co-culture. Further co-cultivation experiments revealed the possible advantage of sequential co-culture over concurrent approaches, where both strains are inoculated simultaneously. Scanning electron microscopy of the strains revealed cell-to-cell contact between the co-culture partners. Finally, a combined pathway of A. woodii [PbgaL_ldhD_NFP] and C. drakei for chain-elongation with positive ATP yield is proposed. CONCLUSION: Lactate was proven to be a well-suited intermediate to combine the high gas uptake capabilities of A. woodii with the chain-elongation potential of C. drakei. The cell-to-cell contact observed here remains to be further characterized in its nature but hints towards diffusive processes being involved in the co-culture. Furthermore, the metabolic pathways involved are still speculatory for C. drakei and do not fully explain the consumption of formate while H2 + CO2 is available. This study exemplifies the potential of combining metabolically engineered and native bacterial strains in a synthetic co-culture.


Subject(s)
Acetobacterium , Autotrophic Processes , Clostridium , Coculture Techniques , Fatty Acids, Volatile , Lactic Acid , Lactic Acid/metabolism , Acetobacterium/metabolism , Acetobacterium/growth & development , Acetobacterium/genetics , Fatty Acids, Volatile/metabolism , Clostridium/metabolism , Clostridium/genetics , Clostridium/growth & development , Carbon Dioxide/metabolism , Acetates/metabolism
3.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37198527

ABSTRACT

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Peptides , Amyloid/chemistry , Anti-Bacterial Agents/pharmacology , Hemoglobins
4.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338957

ABSTRACT

Patients suffering from chronic fatigue syndrome (CFS) or post-COVID syndrome (PCS) exhibit a reduced physiological performance capability. Impaired mitochondrial function and morphology may play a pivotal role. Thus, we aimed to measure the muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity and assess mitochondrial morphology in CFS and PCS patients in comparison to healthy controls (HCs). Mitochondrial OXPHOS capacity was measured in permeabilized muscle fibers using high-resolution respirometry. Mitochondrial morphology (subsarcolemmal/intermyofibrillar mitochondrial form/cristae/diameter/circumference/area) and content (number and proportion/cell) were assessed via electron microscopy. Analyses included differences in OXPHOS between HC, CFS, and PCS, whereas comparisons in morphology/content were made for CFS vs. PCS. OXPHOS capacity of complex I, which was reduced in PCS compared to HC. While the subsarcolemmal area, volume/cell, diameter, and perimeter were higher in PCS vs. CFS, no difference was observed for these variables in intermyofibrillar mitochondria. Both the intermyofibrillar and subsarcolemmal cristae integrity was higher in PCS compared to CFS. Both CFS and PCS exhibit increased fatigue and impaired mitochondrial function, but the progressed pathological morphological changes in CFS suggest structural changes due to prolonged inactivity or unknown molecular causes. Instead, the significantly lower complex I activity in PCS suggests probably direct virus-induced alterations.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/metabolism , COVID-19/complications , COVID-19/metabolism , Mitochondria, Muscle/metabolism , Mitochondria , Muscle Fibers, Skeletal/metabolism
5.
Histochem Cell Biol ; 158(3): 253-260, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35829814

ABSTRACT

Megapinosomes are endocytic organelles found in human macrophage colony-stimulating factor (M-CSF) monocyte-derived M macrophages. They are large (several microns) and have a complex internal structure that is connected with the cytosol and consists of interconnected knots and concave bridges with sizes in the range of 100 nm. We called this structure trabecular meshwork. The luminal part of the megapinosome can be connected with luminal tubules and cisterns that form the megapinosome complex. The structures are especially well visible in scanning electron tomography when macrophages are prepared by high-pressure freezing and freeze substitution. Our research received a new impulse after studying the literature on hematopoietic cells, where very similar, most likely homologous, structures have been published in peritoneal macrophages as well as in megakaryocytes and blood platelets. In platelets, they serve as membrane storage that is used for structural changes of platelets during activation.


Subject(s)
Endocytosis , Macrophages , Megakaryocytes , Humans , Trabecular Meshwork
6.
Histochem Cell Biol ; 157(6): 697-702, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35267057

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) allows the characterization of cellular metabolism by quantifying the rate of free and unbound nicotinamide adenine dinucleotide hydrogen (NADH). This study delineates the correlative imaging of cells with FLIM and electron microscopy (EM). Human fibroblasts were cultivated in a microscopy slide bearing a coordinate system and FLIM measurement was conducted. Following chemical fixation, embedding in Epon and cutting with an ultramicrotome, tomograms of selected cells were acquired with a scanning transmission electron microscope (STEM). Correlative imaging of antimycin A-treated fibroblasts shows a decrease in fluorescence lifetime as well as swollen mitochondria with large cavities in STEM tomography. To our knowledge, this is the first correlative FLIM and EM workflow. Combining the high sensitivity of FLIM with the high spatial resolution of EM could boost the research of pathophysiological processes involving cell metabolism, such as cancer, neurodegenerative disorders, and viral infection.


Subject(s)
Electron Microscope Tomography , Optical Imaging , Humans , Microscopy, Electron , Microscopy, Fluorescence , Workflow
7.
Histochem Cell Biol ; 158(5): 447-462, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35988009

ABSTRACT

Semantic segmentation of electron microscopy images using deep learning methods is a valuable tool for the detailed analysis of organelles and cell structures. However, these methods require a large amount of labeled ground truth data that is often unavailable. To address this limitation, we present a weighted average ensemble model that can automatically segment biological structures in electron microscopy images when trained with only a small dataset. Thus, we exploit the fact that a combination of diverse base-learners is able to outperform one single segmentation model. Our experiments with seven different biological electron microscopy datasets demonstrate quantitative and qualitative improvements. We show that the Grad-CAM method can be used to interpret and verify the prediction of our model. Compared with a standard U-Net, the performance of our method is superior for all tested datasets. Furthermore, our model leverages a limited number of labeled training data to segment the electron microscopy images and therefore has a high potential for automated biological applications.


Subject(s)
Image Processing, Computer-Assisted , Semantics , Image Processing, Computer-Assisted/methods , Microscopy, Electron
8.
Cell Microbiol ; 23(2): e13280, 2021 02.
Article in English | MEDLINE | ID: mdl-33073426

ABSTRACT

Detailed analysis of secondary envelopment of the herpesvirus human cytomegalovirus (HCMV) by transmission electron microscopy (TEM) is crucial for understanding the formation of infectious virions. Here, we present a convolutional neural network (CNN) that automatically recognises cytoplasmic capsids and distinguishes between three HCMV capsid envelopment stages in TEM images. 315 TEM images containing 2,610 expert-labelled capsids of the three classes were available for CNN training. To overcome the limitation of small training datasets and thus poor CNN performance, we used a deep learning method, the generative adversarial network (GAN), to automatically increase our labelled training dataset with 500 synthetic images and thus to 9,192 labelled capsids. The synthetic TEM images were added to the ground truth dataset to train the Faster R-CNN deep learning-based object detector. Training with 315 ground truth images yielded an average precision (AP) of 53.81% for detection, whereas the addition of 500 synthetic training images increased the AP to 76.48%. This shows that generation and additional use of synthetic labelled images for detector training is an inexpensive way to improve detector performance. This work combines the gold standard of secondary envelopment research with state-of-the-art deep learning technology to speed up automatic image analysis even when large labelled training datasets are not available.


Subject(s)
Capsid/ultrastructure , Cytomegalovirus/ultrastructure , Deep Learning , Herpesviridae Infections/diagnostic imaging , Image Processing, Computer-Assisted/methods , Virion/ultrastructure , Algorithms , Cytomegalovirus/metabolism , Herpesviridae Infections/virology , Humans , Machine Learning , Microscopy, Electron, Transmission , Neural Networks, Computer , Virion/metabolism
9.
Gastroenterology ; 159(3): 1019-1035.e22, 2020 09.
Article in English | MEDLINE | ID: mdl-32446697

ABSTRACT

BACKGROUND & AIMS: Pancreatic tumor cells release small extracellular vesicles (sEVs, exosomes) that contain lipids and proteins, RNA, and DNA molecules that might promote formation of metastases. It is not clear what cargo these vesicles contain and how they are released. Protein kinase D1 (PRKD1) inhibits cell motility and is believed to be dysregulated in pancreatic ductal adenocarcinomas. We investigated whether it regulates production of sEVs in pancreatic cancer cells and their ability to form premetastatic niches for pancreatic cancer cells in mice. METHODS: We analyzed data from UALCAN and human pancreatic tissue microarrays to compare levels of PRKD1 between tumor and nontumor tissues. We studied mice with pancreas-specific disruption of Prkd1 (PRKD1KO mice), mice that express oncogenic KRAS (KC mice), and KC mice with disruption of Prkd1 (PRKD1KO-KC mice). Subcutaneous xenograft tumors were grown in NSG mice from Panc1 cells; some mice were then given injections of sEVs. Pancreata and lung tissues from mice were analyzed by histology, immunohistochemistry, and/or quantitative polymerase chain reaction; we performed nanoparticle tracking analysis of plasma sEVs. The Prkd1 gene was disrupted in Panc1 cells using CRISPR-Cas9 or knocked down with small hairpin RNAs, or PRKD1 activity was inhibited with the selective inhibitor CRT0066101. Pancreatic cancer cell lines were analyzed by gene-expression microarray, quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. sEVs secreted by Panc1 cell lines were analyzed by flow cytometry, transmission electron microscopy, and mass spectrometry. RESULTS: Levels of PRKD1 were reduced in human pancreatic ductal adenocarcinoma tissues compared with nontumor tissues. PRKD1KO-KC mice developed more pancreatic intraepithelial neoplasia, at a faster rate, than KC mice, and had more lung metastases and significantly shorter average survival time. Serum from PRKD1KO-KC mice had increased levels of sEVs compared with KC mice. Pancreatic cancer cells with loss or inhibition of PRKD1 increased secretion of sEVs; loss of PRKD1 reduced phosphorylation of its substrate, cortactin, resulting in increased F-actin levels at the plasma membrane. sEVs from cells with loss or reduced expression of PRKD1 had altered content, and injection of these sEVs into mice increased metastasis of xenograft tumors to lung, compared with sEVs from pancreatic cells that expressed PRKD1. PRKD1-deficient pancreatic cancer cells showed increased loading of integrin α6ß4 into sEVs-a process that required CD82. CONCLUSIONS: Human pancreatic ductal adenocarcinoma has reduced levels of PRKD1 compared with nontumor pancreatic tissues. Loss of PRKD1 results in reduced phosphorylation of cortactin in pancreatic cancer cell lines, resulting in increased in F-actin at the plasma membrane and increased release of sEVs, with altered content. These sEVs promote metastasis of xenograft and pancreatic tumors to lung in mice.


Subject(s)
Carcinoma, Pancreatic Ductal/secondary , Extracellular Vesicles/metabolism , Lung Neoplasms/secondary , Pancreatic Neoplasms/pathology , Protein Kinase C/deficiency , Animals , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/blood , Cell Line, Tumor , Cell Movement , Datasets as Topic , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung/pathology , Lung Neoplasms/blood , Mice , Mice, Knockout , Neoplasm Invasiveness/pathology , Oligonucleotide Array Sequence Analysis , Pancreas/pathology , Pancreatic Neoplasms/blood , Phosphorylation , Primary Cell Culture , Protein Kinase C/genetics , Xenograft Model Antitumor Assays
10.
Histochem Cell Biol ; 156(6): 527-538, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34514517

ABSTRACT

Structural changes of two patient-derived glioblastoma cell lines after Zika virus infection were investigated using scanning transmission electron tomography on high-pressure-frozen, freeze-substituted samples. In Zika-virus-infected cells, Golgi structures were barely visible under an electron microscope, and viral factories appeared. The cytosol outside of the viral factories resembled the cytosol of uninfected cells. The viral factories contained largely deranged endoplasmic reticulum (ER), filled with many so-called replication organelles consisting of a luminal vesicle surrounded by the ER membrane. Viral capsids were observed in the vicinity of the replication organelles (cell line #12537 GB) or in ER cisternae at large distance from the replication organelles (cell line #15747 GB). Near the replication organelles, we observed many about 100-nm-long filaments that may represent viral ribonucleoprotein complexes (RNPs), which consist of the RNA genome and N protein oligomers. In addition, we compared Zika-virus-infected cells with cells infected with a phlebovirus (sandfly fever Turkey virus). Zika virions are formed in the ER, whereas phlebovirus virions are assembled in the Golgi apparatus. Our findings will help to understand the replication cycle in the virus factories and the building of the replication organelles in glioblastoma cells.


Subject(s)
Endoplasmic Reticulum/metabolism , Glioblastoma/metabolism , Glioblastoma/virology , Organelles/metabolism , Ribonucleoproteins/metabolism , Zika Virus/metabolism , Electron Microscope Tomography , Humans , Tumor Cells, Cultured , Virus Replication
11.
Nucleic Acids Res ; 47(1): 134-151, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30329080

ABSTRACT

Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.


Subject(s)
Cilia/genetics , DNA Helicases/genetics , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 7/genetics , Transcription, Genetic , Animals , Cilia/pathology , Ciliopathies/genetics , Ciliopathies/pathology , Humans , Mitosis/genetics , Transcription Initiation Site , Zebrafish/genetics
12.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445098

ABSTRACT

Granulysin is an antimicrobial peptide (AMP) expressed by human T-lymphocytes and natural killer cells. Despite a remarkably broad antimicrobial spectrum, its implementation into clinical practice has been hampered by its large size and off-target effects. To circumvent these limitations, we synthesized a 29 amino acid fragment within the putative cytolytic site of Granulysin (termed "Gran1"). We evaluated the antimicrobial activity of Gran1 against the major human pathogen Mycobacterium tuberculosis (Mtb) and a panel of clinically relevant non-tuberculous mycobacteria which are notoriously difficult to treat. Gran1 efficiently inhibited the mycobacterial proliferation in the low micro molar range. Super-resolution fluorescence microscopy and scanning electron microscopy indicated that Gran1 interacts with the surface of Mtb, causing lethal distortions of the cell wall. Importantly, Gran1 showed no off-target effects (cytokine release, chemotaxis, cell death) in primary human cells or zebrafish embryos (cytotoxicity, developmental toxicity, neurotoxicity, cardiotoxicity). Gran1 was selectively internalized by macrophages, the major host cell of Mtb, and restricted the proliferation of the pathogen. Our results demonstrate that the hypothesis-driven design of AMPs is a powerful approach for the identification of small bioactive compounds with specific antimicrobial activity. Gran1 is a promising component for the design of AMP-containing nanoparticles with selective activity and favorable pharmacokinetics to be pushed forward into experimental in vivo models of infectious diseases, most notably tuberculosis.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Animals , Antigens, Differentiation, T-Lymphocyte/chemistry , Cells, Cultured , Host-Pathogen Interactions , Humans , Macrophages/microbiology , Mycobacterium tuberculosis/physiology , Peptides/chemistry , Peptides/immunology , Tuberculosis/microbiology , Zebrafish
13.
J Struct Biol ; 210(3): 107505, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32247049

ABSTRACT

The megapinosome is an endocytic cell organel that we observed in human macrophages with electron microscopy. In a previous work we showed that it is formed by an endocytic event that we called megapinocytosis. The megapinosome is filled with a membrane surrounded trabecular meshwork that is topologically part of the cytosol. In this work we used scanning transmission electron tomography on high pressure frozen and freeze substituted human macrophages in order to unravel the three-dimensional structure of both the megapinosome and the adjacent structures. The megapinosome consists of the trabecular meshwork and the lacunae which are connected with and topologically equivalent to the cytosol. The surrounding lumen is topologically equivalent to the structures of the vesicular pathway. In addition, we show the connections of the trabecular meshwork with the cytosol and the connection of the megapinosomes to a complex tubular and cisternal system covering a large part of the macrophages that we named megapinosome complex. We assume that our methodological approach, based on high pressure freezing from a defined physiological state and three-dimensional imaging, renders the tubular components of the macrophages better visible than the classical two-dimensional imaging of chemically fixed cells used as a "blueprint" for textbook illustrations. The cell biological functions of the megapinosome are largely enigmatic. Probably, megapinosomes assures storage of surface membranes that can be promptly made available when a macrophage needs to change shape to move through a tissue, to uptake extracellular material or dead cells as well as to fight against microbes.


Subject(s)
Macrophages/metabolism , Microscopy, Electron/methods , Cytosol/metabolism , Endocytosis/physiology , Pressure
14.
J Struct Biol ; 212(2): 107613, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32891730

ABSTRACT

Like in most Crustacea, the cuticle of terrestrial isopods is hardened by a calcareous mineral phase. This rigid cuticle is frequently shed during a process called moulting. To reduce calcium loss, Porcellio scaber eats the shed cuticle, the exuviae, and absorb the calcium from it through large tubular diverticula of the intestine, called the mid gut glands or hepatopancreas. After moulting the absorbed calcium should be transported immediately into the hemolymph from which it is used to rapidly mineralize the new cuticle. This suggests that the hepatopancreas epithelium transports calcium from the lumen to the hemolymph. We used TEM, energy-filtered TEM and electron-probe X-ray microanalysis to analyse the distribution of elevated calcium within the hepatopancreas cells of P. scaber. We used animals in the postmoult stage that have eaten their exuviae and, as a control, those that have not ingested the exuviae. To minimize calcium loss within the samples, we used high pressure frozen and freeze substituted samples and propane-1-3-diol as floatation medium for thin-sectioning. The results reveal intracellular dense deposits containing calcium, phosphorus and oxygen at the apical microvillus membrane, within the cytoplasm, attached to vesicles and to the basolateral membrane, as well as extracellular between cells and the basal lamina. Control animals were devoid of these deposits. The results indicate that calcium from the exuviae is absorbed and transported across the epithelium into the hemolymph. We propose that during transport, intracellular calcium is bound to phosphate avoiding toxic effects of high concentrations of ionized calcium.


Subject(s)
Calcium Phosphates/metabolism , Calcium/metabolism , Hepatopancreas/metabolism , Isopoda/metabolism , Animals , Basement Membrane/metabolism , Calcification, Physiologic/physiology , Cytoplasm/metabolism , Minerals/metabolism , Molting/physiology
15.
J Struct Biol ; 211(3): 107551, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32589927

ABSTRACT

The interpretation of cell biological processes hinges on the elucidation of the underlying structures. Their three-dimensional analysis using electron tomography has extended our understanding of cellular organelles tremendously. The investigations depend on the availability of appropriate instruments for data recording. So far, such investigations have been done to a great extent on 300 keV transmission electron microscopes. Here we show the implementation of STEM tomography on a 200 kV FEG transmission electron microscope, including the tuning of the condenser for forming a beam with a small illumination aperture, dual-axis data recording, and evaluation of the maximum sample thickness and quality of the data. Our results show that the approach is accomplishable and promising, with high reliability, and reaching excellent data quality from plastic sections with a thickness of at least 900 nm.


Subject(s)
Electron Microscope Tomography/instrumentation , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Animals , Kidney/diagnostic imaging , Mice , Software , Tissue Embedding
16.
Circulation ; 139(7): 918-931, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30586717

ABSTRACT

BACKGROUND: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. METHODS: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. RESULTS: Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition-reported to protect patients with depression from cardiovascular events-resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. CONCLUSIONS: Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.


Subject(s)
Blood Platelets/metabolism , Cell Degranulation , Myocardial Infarction/blood , Myocardial Reperfusion Injury/blood , Myocardium/metabolism , Neutrophils/metabolism , Serotonin/blood , Acute Coronary Syndrome/blood , Animals , CD11b Antigen/blood , Case-Control Studies , Disease Models, Animal , Humans , Hydrogen Peroxide/blood , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Neutrophils/pathology , Peroxidase/blood , Tryptophan Hydroxylase/deficiency , Tryptophan Hydroxylase/genetics
17.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32926779

ABSTRACT

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Viral Envelope Proteins/drug effects , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Amyloid/antagonists & inhibitors , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Arginine/chemistry , Betacoronavirus/drug effects , Bridged-Ring Compounds/chemistry , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/virology , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Lipids/chemistry , Lysine/chemistry , Magnetic Resonance Spectroscopy , Organophosphates/chemistry , SARS-CoV-2 , Seminal Vesicle Secretory Proteins/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Structure-Activity Relationship , Viral Envelope Proteins/metabolism , Zika Virus/drug effects
18.
Hum Mol Genet ; 27(4): 706-715, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29315381

ABSTRACT

Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.


Subject(s)
Haploinsufficiency/physiology , Mitochondrial Proteins/metabolism , Motor Neuron Disease/metabolism , Animals , DNA, Complementary/genetics , DNA, Complementary/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Haploinsufficiency/genetics , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Motor Neuron Disease/genetics , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996102

ABSTRACT

Human cytomegalovirus (HCMV) secondary envelopment requires the viral tegument protein pUL71. The lack of pUL71 results in a complex ultrastructural phenotype with increased numbers of viral capsids undergoing envelopment at the cytoplasmic virus assembly complex. Here, we report a role of the pUL71 C terminus in secondary envelopment. Mutant viruses expressing C-terminally truncated pUL71 (TB71del327-361 and TB71del348-351) exhibited an impaired secondary envelopment in transmission electron microscopy (TEM) studies. Further mutational analyses of the C terminus revealed a tetralysine motif whose mutation (TB71mutK348-351A) resulted in an envelopment defect that was undistinguishable from the defect caused by truncation of the pUL71 C terminus. Interestingly, not all morphological alterations that define the ultrastructural phenotype of a TB71stop virus were found in cells infected with the C-terminally mutated viruses. This suggests that pUL71 provides additional functions that modulate HCMV morphogenesis and are harbored elsewhere in pUL71. This is also reflected by an intermediate growth defect of the C-terminally mutated viruses compared to the growth of the TB71stop virus. Electron tomography and three-dimensional visualization of different stages of secondary envelopment in TB71mutK348-351A-infected cells showed unambiguously the formation of a bud neck. Furthermore, we provide evidence for progressive tegument formation linked to advancing grades of capsid envelopment, suggesting that tegumentation and envelopment are intertwined processes. Altogether, we identified the importance of the pUL71 C terminus and, specifically, of a positively charged tetralysine motif for HCMV secondary envelopment.IMPORTANCE Human cytomegalovirus (HCMV) is an important human pathogen that causes severe symptoms, especially in immunocompromised hosts. Furthermore, congenital HCMV infection is the leading viral cause of severe birth defects. Development of antiviral drugs to prevent the production of infectious virus progeny is challenging due to a complex and multistep virion morphogenesis. The mechanism of secondary envelopment is still not fully understood; nevertheless, it represents a potential target for antiviral drugs. Our identification of the role of a positively charged motif in the pUL71 C terminus for efficient HCMV secondary envelopment underlines the importance of pUL71 and, especially, its C terminus for this process. It furthermore shows how cell-associated spread and virion release depend on secondary envelopment. Ultrastructural analyses of different stages of envelopment contribute to a better understanding of the mechanisms underlying the process of secondary envelopment. This may bring us closer to the development of novel concepts to treat HCMV infections.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Polylysine , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/ultrastructure , Cell Line , Cytomegalovirus/ultrastructure , Cytoplasm/virology , Humans , Mutation , Sequence Alignment , Viral Proteins/metabolism , Virus Assembly
20.
Plant Cell Environ ; 43(1): 116-130, 2020 01.
Article in English | MEDLINE | ID: mdl-31595539

ABSTRACT

Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three-dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air-seeding through this porous medium.


Subject(s)
Magnoliopsida/ultrastructure , Xylem/ultrastructure , Acer/chemistry , Biological Transport , Cinnamomum camphora/chemistry , Constriction , Corylus/chemistry , Fagus/chemistry , Gold Colloid/chemistry , Liriodendron/chemistry , Microscopy, Electron, Transmission , Persea/chemistry , Populus/chemistry , Porosity , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL