Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Cell Proteomics ; 14(3): 674-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25582440

ABSTRACT

RAD6 is a ubiquitin E2 protein with roles in a number of different biological processes. Here, using affinity purification coupled with mass spectrometry, we identify a number of new RAD6 binding partners, including the poorly characterized ubiquitin E3 ligases KCMF1 (potassium channel modulatory factor 1) and UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4), a protein that can bind N-end rule substrates, and which was recently linked to lysosome-mediated degradation and autophagy. NMR, combined with in vivo and in vitro interaction mapping, demonstrate that the KCMF1 C terminus binds directly to RAD6, whereas N-terminal domains interact with UBR4 and other intracellular vesicle- and mitochondria-associated proteins. KCMF1 and RAD6 colocalize at late endosomes and lysosomes, and cells disrupted for KCMF1 or RAD6 function display defects in late endosome vesicle dynamics. Notably, we also find that two different RAD6A point mutants (R7W and R11Q) found in X-linked intellectual disability (XLID) patients specifically lose the interaction with KCMF1 and UBR4, but not with other previously identified RAD6 interactors. We propose that RAD6-KCMF1-UBR4 represents a unique new E2-E3 complex that targets unknown N-end rule substrates for lysosome-mediated degradation, and that disruption of this complex via RAD6A mutations could negatively affect neuronal function in XLID patients.


Subject(s)
Calmodulin-Binding Proteins/metabolism , Cytoskeletal Proteins/metabolism , Lysosomes/metabolism , Mental Retardation, X-Linked/genetics , Proteomics/methods , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Autophagy , Binding Sites , Chromatography, Affinity , HEK293 Cells , Humans , Mass Spectrometry , Mental Retardation, X-Linked/metabolism , Models, Molecular , Point Mutation , Ubiquitin-Conjugating Enzymes/genetics
2.
Proc Natl Acad Sci U S A ; 110(46): 18722-7, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24170858

ABSTRACT

Plant and animal pathogenic bacteria can suppress host immunity by injecting type III secreted effector (T3SE) proteins into host cells. However, T3SEs can also elicit host immunity if the host has evolved a means to recognize the presence or activity of specific T3SEs. The diverse YopJ/HopZ/AvrRxv T3SE superfamily, which is found in both animal and plant pathogens, provides examples of T3SEs playing this dual role. The T3SE HopZ1a is an acetyltransferase carried by the phytopathogen Pseudomonas syringae that elicits effector-triggered immunity (ETI) when recognized in Arabidopsis thaliana by the nucleotide-binding leucine-rich repeat (NB-LRR) protein ZAR1. However, recognition of HopZ1a does not require any known ETI-related genes. Using a forward genetics approach, we identify a unique ETI-associated gene that is essential for ZAR1-mediated immunity. The hopZ-ETI-deficient1 (zed1) mutant is specifically impaired in the recognition of HopZ1a, but not the recognition of other unrelated T3SEs or in pattern recognition receptor (PRR)-triggered immunity. ZED1 directly interacts with both HopZ1a and ZAR1 and is acetylated on threonines 125 and 177 by HopZ1a. ZED1 is a nonfunctional kinase that forms part of small genomic cluster of kinases in Arabidopsis. We hypothesize that ZED1 acts as a decoy to lure HopZ1a to the ZAR1-resistance complex, resulting in ETI activation.


Subject(s)
Acetyltransferases/immunology , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/immunology , Carrier Proteins/immunology , Phosphotransferases/metabolism , Pseudomonas syringae/immunology , Acetyltransferases/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Blotting, Western , Carrier Proteins/metabolism , Chromatography, Liquid , Cloning, Molecular , Cluster Analysis , Immunoprecipitation , Phosphotransferases/genetics , Phylogeny , Pseudomonas syringae/enzymology , Surface Plasmon Resonance , Tandem Mass Spectrometry , Two-Hybrid System Techniques
3.
Mol Cell Proteomics ; 11(8): 329-41, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22496338

ABSTRACT

Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an "acidic trough" located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction. Our data set represents the first comprehensive analysis of E2-HECT E3 interactions, and thus provides a framework for better understanding the molecular mechanisms of ubiquitylation.


Subject(s)
Protein Structure, Tertiary , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Blotting, Western , Catalytic Domain , Evolution, Molecular , Humans , Mass Spectrometry , Models, Molecular , Phylogeny , Protein Binding , Sequence Homology, Amino Acid , Static Electricity , Surface Properties , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/classification , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
BMC Genomics ; 13: 8, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22230763

ABSTRACT

BACKGROUND: Identification of protein-protein interactions is a fundamental aspect of understanding protein function. A commonly used method for identifying protein interactions is the yeast two-hybrid system. RESULTS: Here we describe the application of next-generation sequencing to yeast two-hybrid interaction screens and develop Quantitative Interactor Screen Sequencing (QIS-Seq). QIS-Seq provides a quantitative measurement of enrichment for each interactor relative to its frequency in the library as well as its general stickiness (non-specific binding). The QIS-Seq approach is scalable and can be used with any yeast two-hybrid screen and with any next-generation sequencing platform. The quantitative nature of QIS-Seq data make it amenable to statistical evaluation, and importantly, facilitates the standardization of experimental design, data collection, and data analysis. We applied QIS-Seq to identify the Arabidopsis thaliana MLO2 protein as a target of the Pseudomonas syringae type III secreted effector protein HopZ2. We validate the interaction between HopZ2 and MLO2 in planta and show that the interaction is required for HopZ2-associated virulence. CONCLUSIONS: We demonstrate that QIS-Seq is a high-throughput quantitative interactor screen and validate MLO2 as an interactor and novel virulence target of the P. syringae type III secreted effector HopZ2.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Bacterial Proteins/genetics , High-Throughput Screening Assays , Membrane Proteins/genetics , Pseudomonas syringae/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Gene Library , Host-Pathogen Interactions , Protein Binding , Protein Transport , Pseudomonas syringae/metabolism , Pseudomonas syringae/pathogenicity , Two-Hybrid System Techniques , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL