Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Gynecol Endocrinol ; 39(1): 2227280, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37356454

ABSTRACT

OBJECTIVE: Polycystic ovarian syndrome (PCOS) is a common disorder that leads to infertility in reproductive-aged females. HOTAIR is highly expressed in various gynecological diseases and is associated with a poor prognosis. We aimed to explore the role of HOTAIR in PCOS. METHODS: First, PCOS rats were induced using dehydroepiandrosterone and then treated with si-HOTAIR. Next, HOTAIR mRNA expression and serum hormone levels were detected. HE staining was applied to observe estrus cycle, ovarian morphology and count the number of follicles. Apoptosis in the ovary was detected by TUNEL. Thereafter, ovarian granulosa cells (GCs) were isolated from PCOS rats, transfected with si-HOTAIR and treated with LY294002 (Akt inhibitor) or IGF-1. CCK-8 and flow cytometry assays were used to evaluate cell viability and apoptosis. IGF-1, apoptosis- and PI3K/Akt pathway-associated protein expressions in ovary and GCs were also detected. RESULTS: In in vivo experiments, si-HOTAIR decreased serum T, E2 and LH levels but increased FSH level, restored estrus cycle, ovarian morphology and inhibited apoptosis of ovary in PCOS rats. Meanwhile, in vitro assays showed that si-HOTAIR upregulated the viability but inhibited the apoptosis of PCOS GCs. Furthermore, both in vivo and in vitro assays revealed that si-HOTAIR increased Bcl-2 expression but suppressed Bax, Bad, IGF-1 expressions and PI3K, AKT phosphorylation. However, the aforementioned effects of si-HOTAIR in vitro were further enhanced by LY294002 and partially reversed by IGF-1. CONCLUSIONS: HOTAIR knockdown improved PCOS, and the mechanism may relate to IGF-1-mediated PI3K/Akt pathway, indicating HOTAIR may be a novel therapeutic target for PCOS.


Subject(s)
Polycystic Ovary Syndrome , RNA, Long Noncoding , Humans , Female , Rats , Animals , Polycystic Ovary Syndrome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Long Noncoding/genetics , Insulin-Like Growth Factor I/metabolism , Granulosa Cells/metabolism
3.
J Ethnopharmacol ; 280: 114443, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34302943

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi Yanzong pill (WZYZP) is a classical traditional Chinese medicine (TCM) formula originated from the Tang dynasty. WZYZP has a long history of use for reinforcing kidney and alleviating male infertility in China. AIM OF THE STUDY: The effect of WZYZP on male infertility and the mechanism underlying this effect was not clarified clearly. Therefore, this study aimed to investigate the protective effect of WZYZP in experimental spermatogenesis disorder via in vivo and in vitro studies, to promote the use of this formula for the treatment of spermatogenesis disorder. MATERIAL AND METHODS: Male SD rats were exposed to tripterygium glycosides to induce experimental spermatogenesis disorder, and WZYZP was subsequently administrated at different dosages for treatment. Sperm counts, sperm motility, and serum hormone levels were detected. HE staining and TUNEL staining were performed to evaluate the pathological lesions and apoptosis of testes, respectively. Next, germ cells were isolated from spermatogenesis disorder-model rats and treated with WZYZP- containing serum at different concentrations. CCK-8 assay and flow cytometry assay were performed to detect cell proliferation and apoptosis. Immunofluorescence assay, qRT-PCR and Western blotting analyses were performed to detect the expression of Beclin 1, LC3 and TGF-ß-PI3k/AKT-mTOR pathway - related factors, including TGF-ß, PI3K, AKT, mTOR, 4 EBP-1 and p70S6K. RESULTS: In vivo experiments showed that WZYZP protected against spermatogenesis disorder in model rats by improving sperm count and motility, as well as restoring serum hormone levels. HE and TUNEL staining demonstrated that the pathological injuries and cell apoptosis in testes of the model rats were alleviated by WZYZP treatment. Moreover, in vitro experiments of germ cells isolated from spermatogenesis disorder-model rats showed that WZYZP treatment increased the cell proliferation, inhibited cell apoptosis and autophagy. qRT-PCR and Western blotting assay results showed that this protective effect was associated with the regulation of the TGF-ß/PI3K/AKT/mTOR signaling pathway. The expression levels of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, 4 EBP-1 and p70S6K were increased, while TGF-ß was inhibited in the WZYZP treated groups. CONCLUSION: The results showed that WZYZP could protect against experimental spermatogenesis disorder by increasing the germ cell proliferation and inhibiting their apoptosis. Our support the clinical use of this formula for the management of spermatogenesis disorder.


Subject(s)
Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Infertility, Male/drug therapy , Spermatogenesis/drug effects , Animals , Apoptosis/drug effects , Autophagy/drug effects , Disease Models, Animal , Germ Cells/cytology , Germ Cells/drug effects , Male , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Sperm Motility/drug effects , TOR Serine-Threonine Kinases/metabolism , Testis/drug effects
4.
Front Pharmacol ; 11: 592827, 2020.
Article in English | MEDLINE | ID: mdl-33390971

ABSTRACT

The crisis of male infertility is an issue of human reproductive health worldwide. The Wuzi Yanzong pill (WZYZP) is a traditional Chinese medicine prescription that shows efficacy in kidney reinforcement and essence benefit to ameliorate male reproductive dysfunctions. However, the pharmacological mechanisms of the WZYZP on male infertility have not been investigated and clarified clearly. This study was designed to investigate the effects of the WZYZP on spermatogenesis disorder and explore its underlying pharmacological mechanisms. First, based on a network pharmacology study, 39 bioactive compounds and 40 targets of the WZYZP associated with spermatogenesis disorder were obtained, forming a tight compound-target network. Molecular docking tests showed tight docking of these compounds with predicted targeted proteins. The protein-protein interaction (PPI) network identified TP53, TNF, AKT1, Bcl-XL, Bcl-2, and IκBA as hub targets. The Kyoto Encyclopedia of Genes and Genomes pathway network and pathway-target-compound network revealed that the apoptosis pathway was enriched by multiple signaling pathways and multiple targets, including the hub targets. Subsequently, the chemical characterization of WZYZP was analyzed using liquid chromatography to quadrupole/time-of-flight mass spectrometry, and 40 compounds in positive ion mode and 41 compounds in negative ion mode in the WZYZP were identified. Furthermore, based on the prediction of a network pharmacology study, a rat model of spermatogenesis disorder was established to evaluate the curative role and underlying mechanisms of the WZYZP. The results showed that WZYZP treatment improved rat sperm quality and attenuated serum hormone levels, reversed histopathological damage of the testis, reduced cell apoptosis in testis tissues, and ameliorated the expression of the predicted hub targets (TP53, TNF-α, AKT1, NFκB, and IκBA) and the apoptosis related proteins (Bcl-XL, Bcl-2, Bax, Caspase 3, and Caspase 9). These results indicated that the WZYZP has a protective effect on spermatogenesis disorder, suggesting that it could be an alternative choice for male infertility therapy.

SELECTION OF CITATIONS
SEARCH DETAIL