Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.447
Filter
Add more filters

Publication year range
1.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116474

ABSTRACT

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Subject(s)
Viruses , Zoonoses , Animals , Humans , Mammals , Disease Outbreaks , Risk Assessment
2.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35298912

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/virology , Disease Reservoirs , Mammals/virology , Virome , Animals , China , Phylogeny , Zoonoses
3.
Nat Immunol ; 23(6): 960-970, 2022 06.
Article in English | MEDLINE | ID: mdl-35654851

ABSTRACT

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus
4.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506694

ABSTRACT

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Subject(s)
Monocytes , Stem Cells , Mice , Humans , Animals , Phenotype , Cells, Cultured , Dendritic Cells , Cell Differentiation
5.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36889306

ABSTRACT

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Antibodies, Viral
6.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35931085

ABSTRACT

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Subject(s)
Alzheimer Disease , Microglia , Aging , Alzheimer Disease/genetics , Animals , Brain/pathology , Humans , Macrophages/pathology , Membrane Glycoproteins , Mice , Microglia/pathology , Receptors, Immunologic
7.
Immunity ; 54(8): 1883-1900.e5, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34331874

ABSTRACT

Mononuclear phagocytes (MNPs) encompass dendritic cells, monocytes, and macrophages (MoMac), which exhibit antimicrobial, homeostatic, and immunoregulatory functions. We integrated 178,651 MNPs from 13 tissues across 41 datasets to generate a MNP single-cell RNA compendium (MNP-VERSE), a publicly available tool to map MNPs and define conserved gene signatures of MNP populations. Next, we generated a MoMac-focused compendium that revealed an array of specialized cell subsets widely distributed across multiple tissues. Specific pathological forms were expanded in cancer and inflammation. All neoplastic tissues contained conserved tumor-associated macrophage populations. In particular, we focused on IL4I1+CD274(PD-L1)+IDO1+ macrophages, which accumulated in the tumor periphery in a T cell-dependent manner via interferon-γ (IFN-γ) and CD40/CD40L-induced maturation from IFN-primed monocytes. IL4I1_Macs exhibited immunosuppressive characteristics through tryptophan degradation and promoted the entry of regulatory T cell into tumors. This integrated analysis provides a robust online-available platform for uniform annotation and dissection of specific macrophage functions in healthy and pathological states.


Subject(s)
Dendritic Cells/immunology , Gene Expression/immunology , Monocytes/immunology , Transcriptome/genetics , Tumor-Associated Macrophages/immunology , Arthritis, Rheumatoid/immunology , COVID-19/immunology , Gene Expression/genetics , Gene Expression Profiling , Humans , Interferon-gamma/immunology , L-Amino Acid Oxidase/metabolism , Liver Cirrhosis/immunology , Macrophages/immunology , Neoplasms/immunology , RNA, Small Cytoplasmic/genetics , Single-Cell Analysis , T-Lymphocytes, Regulatory/immunology , Transcriptome/immunology
8.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34469775

ABSTRACT

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Subject(s)
CD36 Antigens/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Obesity/metabolism , Oxidative Stress/physiology , Animals , Mice
9.
Nature ; 623(7986): 397-405, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914940

ABSTRACT

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Subject(s)
Brain , Cholesterol , Induced Pluripotent Stem Cells , Microglia , Neural Stem Cells , Neurogenesis , Organoids , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Microglia/metabolism , Organoids/cytology , Organoids/metabolism , Cholesterol/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Axons , Cell Proliferation , Esters/metabolism , Lipid Droplets/metabolism
10.
Immunity ; 50(4): 1069-1083.e8, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926233

ABSTRACT

Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.


Subject(s)
Acne Vulgaris/immunology , Dendritic Cells/classification , Gram-Positive Bacterial Infections/immunology , Neutrophil Infiltration/immunology , Vascular Endothelial Growth Factor A/immunology , Acne Vulgaris/microbiology , Animals , Antigen Presentation , Chemotaxis, Leukocyte/immunology , Dendritic Cells/immunology , Ear, External , Gene Expression Regulation , Gene Ontology , Gram-Positive Bacterial Infections/microbiology , Humans , Injections, Intradermal , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Propionibacterium acnes , RNA, Messenger/biosynthesis , Single-Cell Analysis , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics
11.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741151

ABSTRACT

MOTIVATION: Systems biology aims to better understand living systems through mathematical modelling of experimental and clinical data. A pervasive challenge in quantitative dynamical modelling is the integration of time series measurements, which often have high variability and low sampling resolution. Approaches are required to utilize such information while consistently handling uncertainties. RESULTS: We present BayModTS (Bayesian modelling of time series data), a new FAIR (findable, accessible, interoperable, and reusable) workflow for processing and analysing sparse and highly variable time series data. BayModTS consistently transfers uncertainties from data to model predictions, including process knowledge via parameterized models. Further, credible differences in the dynamics of different conditions can be identified by filtering noise. To demonstrate the power and versatility of BayModTS, we applied it to three hepatic datasets gathered from three different species and with different measurement techniques: (i) blood perfusion measurements by magnetic resonance imaging in rat livers after portal vein ligation, (ii) pharmacokinetic time series of different drugs in normal and steatotic mice, and (iii) CT-based volumetric assessment of human liver remnants after clinical liver resection. AVAILABILITY AND IMPLEMENTATION: The BayModTS codebase is available on GitHub at https://github.com/Systems-Theory-in-Systems-Biology/BayModTS. The repository contains a Python script for the executable BayModTS workflow and a widely applicable SBML (systems biology markup language) model for retarded transient functions. In addition, all examples from the paper are included in the repository. Data and code of the application examples are stored on DaRUS: https://doi.org/10.18419/darus-3876. The raw MRI ROI voxel data were uploaded to DaRUS: https://doi.org/10.18419/darus-3878. The steatosis metabolite data are published on FairdomHub: 10.15490/fairdomhub.1.study.1070.1.


Subject(s)
Bayes Theorem , Workflow , Animals , Rats , Humans , Mice , Systems Biology/methods , Liver/metabolism , Software , Magnetic Resonance Imaging/methods
12.
Proc Natl Acad Sci U S A ; 119(29): e2205784119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35767670

ABSTRACT

Many neutralizing antibodies (nAbs) elicited to ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through natural infection and vaccination have reduced effectiveness to SARS-CoV-2 variants. Here, we show that therapeutic antibody ADG20 is able to neutralize SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize a broad range of VOCs, albeit with reduced potency against Omicron. Thus, this conserved and vulnerable site can be exploited for the design of universal vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Epitopes/immunology , Humans , Neutralization Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
13.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046017

ABSTRACT

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Lung/pathology , Macrophages, Alveolar/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Apoptosis/immunology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Chaperone BiP/physiology , Female , Homeostasis , Inflammation , Intercellular Signaling Peptides and Proteins/physiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/physiology , Male , Mice , Mice, Inbred BALB C , Phagocytosis/physiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/metabolism , Smoke/adverse effects , Smoking/adverse effects , Nicotiana/adverse effects
14.
Plant Cell Physiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985662

ABSTRACT

To analyze the gene involved in orchid floral development, a HD-Zip II gene PaHAT14, which specifically and highly expressed in perianth during early flower development was identified from Phalaenopsis. Transgenic Arabidopsis plants expressing 35S::PaHAT14 and 35S::PaHAT14+SRDX (fused with the repressor motif SRDX) exhibited similar altered phenotypes, including small leaves, early flowering, and bending petals with increased cuticle production. This suggests that PaHAT14 acts as a repressor. In contrast, transgenic Arabidopsis plants expressing 35S::PaHAT14+VP16 (fused with the activation domain VP16) exhibited curled leaves, late flowering, and folded petals with decreased cuticle production within hardly opened flowers. Additionally, the expression of the ERF gene DEWAX2, which negatively regulates cuticular wax biosynthesis, was down-regulated in 35S::PaHAT14 and 35S::PaHAT14+SRDX transgenic Arabidopsis, while it was up-regulated in 35S::PaHAT14+VP16 transgenic Arabidopsis. Furthermore, transient overexpression of PaHAT14 in Phalaenopsis petal/sepal increased cuticle deposition due to the down-regulation of PaERF105, a Phalaenopsis DEWAX2 orthologue. On the other hand, transient overexpression of PaERF105 decreased cuticle deposition, whereas cuticle deposition increased and the rate of epidermal water loss was reduced in PaERF105 VIGS Phalaenopsis flowers. Moreover, ectopic expression of PaERF105 not only produced phenotypes similar to those in 35S::PaHAT14+VP16 Arabidopsis but also compensated for the altered phenotypes observed in 35S::PaHAT14 and 35S::PaHAT14+SRDX Arabidopsis. These results suggest that PaHAT14 promotes cuticle deposition by negatively regulating downstream gene PaERF105 in orchid flowers.

15.
Gastroenterology ; 164(4): 669-679.e6, 2023 04.
Article in English | MEDLINE | ID: mdl-36642151

ABSTRACT

BACKGROUND & AIMS: Seroclearance of hepatitis B surface antigen (HBsAg) indicates functional cure for hepatitis B virus (HBV) infection. Low HBsAg levels can predict HBsAg seroclearance over time. However, little is known about the association between hepatitis B core-related antigen (HBcrAg) levels and spontaneous seroclearance of HBsAg. METHODS: We conducted a retrospective cohort study including 2614 treatment-naïve patients with chronic HBV infection who received long-term follow-up at the National Taiwan University Hospital. The primary end point was spontaneous HBsAg seroclearance. We aimed to explore whether HBcrAg levels could predict HBsAg seroclearance, especially for patients with HBsAg levels >1000 IU/mL. RESULTS: There were 465 patients who cleared HBsAg with 32,414.72 person-years of follow-up, with a mean clearance rate of 1.43% per year. We found that lower HBcrAg levels at baseline were associated with an increased likelihood of HBsAg seroclearance (log rank P < .001). When restricting the study population to 1539 patients with HBsAg levels >1000 IU/mL, only HBcrAg <10,000 U/mL (vs ≥100,000 U/mL) served as an independent viral predictor for HBsAg seroclearance, with adjusted hazard ratio of 1.95 (95% CI, 1.16-3.27). In contrast to the late decline of HBsAg levels (5-9 years before HBsAg seroclearance), HBcrAg levels became undetectable 10-14 years before HBsAg seroclearance. This finding was confirmed by the different annual HBsAg seroclearance rates in the first and second decades of follow-up (0.97% vs 3.75%; P < .001) in patients achieving undetectable HBcrAg levels. CONCLUSIONS: Lower serum HBcrAg levels were associated with increased probability of HBsAg seroclearance over time. In patients with HBsAg levels >1000 IU/mL, clearing HBcrAg may serve as an early biomarker for HBsAg seroclearance.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B Surface Antigens , Hepatitis B, Chronic/epidemiology , Hepatitis B Core Antigens , Retrospective Studies , Hepatitis B e Antigens , Hepatitis B virus , DNA, Viral , Hepatitis B/complications
16.
Small ; : e2401558, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829043

ABSTRACT

By primarily adjusting the reagent amounts, particularly the volume of AgNO3 solution introduced, Ag2O cubes with decreasing sizes from 440 to 79 nm, octahedra from 714 to 106 nm, and rhombic dodecahedra from 644 to 168 nm are synthesized. 733 nm cuboctahedra are also prepared for structural analysis. With in-house X-ray diffraction (XRD) peak calibration, shape-related peak shifts are recognizable. Synchrotron XRD measurements at 100 K reveal the presence of bulk and surface layer lattices. Bulk cell constants also deviate slightly. They show a negative thermal expansion behavior with shrinking cell constants at higher temperatures. The Ag2O crystals exhibit size- and facet-dependent optical properties. Bandgaps red-shift continuously with increasing particle sizes. Optical facet effect is also observable. Moreover, synchrotron XRD peaks of a mixture of Cu2O rhombicuboctahedra and edge- and corner-truncated cubes exposing all three crystal faces can be deconvoluted into three components with the bulk and the [111] microstrain phase as the major component. Interestingly, while the unheated Cu2O sample shows clear diffraction peak asymmetry, annealing the sample to 450 K yields nearly symmetric peaks even when returning the sample to room temperature, meaning even moderately high temperatures can permanently change the crystal lattice.

17.
J Virol ; 97(1): e0109122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36475767

ABSTRACT

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Subject(s)
Arboviruses , Genome, Viral , Phylogeny , Animals , Humans , Mice , Arboviruses/genetics , China/epidemiology , Genomics , Livestock/virology
18.
BMC Microbiol ; 24(1): 275, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048954

ABSTRACT

BACKGROUND: Extreme precipitation events often cause sudden drops in salinity, leading to disease outbreaks in shrimp aquaculture. Evidence suggests that environmental stress increases animal host susceptibility to pathogens. However, the mechanisms of how low salinity stress induces disease susceptibility remain poorly understood. METHODS: We investigated the acute response of shrimp gut microbiota exposed to pathogens under low salinity stress. For comparison, shrimp were exposed to Vibrio infection under two salinity conditions: optimal salinity (Control group) and low salinity stress (Stress group). High throughput 16S rRNA sequencing and real-time PCR were employed to characterize the shrimp gut microbiota and quantify the severity level of Vibrio infection. RESULTS: The results showed that low salinity stress increased Vibrio infection levels, reduced gut microbiota species richness, and perturbed microbial functions in the shrimp gut, leading to significant changes in lipopolysaccharide biosynthesis that promoted the growth of pathogens. Gut microbiota of the bacterial genera Candidatus Bacilliplasma, Cellvibrio, and Photobacterium were identified as biomarkers of the Stress group. The functions of the gut microbiota in the Stress group were primarily associated with cellular processes and the metabolism of lipid-related compounds. CONCLUSIONS: Our findings reveal how environmental stress, particularly low salinity, increases shrimp susceptibility to Vibrio infection by affecting the gut microbiota. This highlights the importance of avoiding low salinity stress and promoting gut microbiota resilience to maintain the health of shrimp.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Penaeidae , RNA, Ribosomal, 16S , Salt Stress , Vibrio Infections , Vibrio parahaemolyticus , Animals , Penaeidae/microbiology , Vibrio parahaemolyticus/physiology , RNA, Ribosomal, 16S/genetics , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Dysbiosis/microbiology , Salinity , Aquaculture , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
19.
Plant Physiol ; 192(4): 2628-2639, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37148285

ABSTRACT

Transcriptional regulation mediated by combinatorial interaction of transcription factors (TFs) is a key molecular mechanism modulating plant development and metabolism. Basic leucine zipper (bZIP) TFs play important roles in various plant developmental and physiological processes. However, their involvement in fatty acid biosynthesis is largely unknown. Arabidopsis (Arabidopsis thaliana) WRINKLED1 (WRI1) is a pivotal TF in regulation of plant oil biosynthesis and interacts with other positive and negative regulators. In this study, we identified two bZIP TFs, bZIP21 and bZIP52, as interacting partners of AtWRI1 by yeast-two-hybrid (Y2H)-based screening of an Arabidopsis TF library. We found that coexpression of bZIP52, but not bZIP21, with AtWRI1 reduced AtWRI1-mediated oil biosynthesis in Nicotiana benthamiana leaves. The AtWRI1-bZIP52 interaction was further verified by Y2H, in vitro pull-down, and bimolecular fluorescence complementation assays. Transgenic Arabidopsis plants overexpressing bZIP52 showed reduced seed oil accumulation, while the CRISPR/Cas9-edited bzip52 knockout mutant exhibited increased seed oil accumulation. Further analysis revealed that bZIP52 represses the transcriptional activity of AtWRI1 on the fatty acid biosynthetic gene promoters. Together, our findings suggest that bZIP52 represses fatty acid biosynthesis genes through interaction with AtWRI1, resulting in a reduction of oil production. Our work reports a previously uncharacterized regulatory mechanism that enables fine-tuning of seed oil biosynthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Fatty Acids/metabolism , Plant Oils/metabolism , Seeds/genetics , Seeds/metabolism , Plants, Genetically Modified/metabolism
20.
Chem Res Toxicol ; 37(6): 957-967, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38771128

ABSTRACT

Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.


Subject(s)
Bronchi , Carcinogens , Cell Cycle , Cell Proliferation , Epithelial Cells , Nicotiana , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Bronchi/cytology , Bronchi/pathology , Bronchi/drug effects , Cell Proliferation/drug effects , Nicotiana/adverse effects , Cell Cycle/drug effects , Carcinogens/toxicity , Nitrosamines/toxicity , Cell Line , Cell Movement/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL