Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Soft Matter ; 11(21): 4197-207, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25882114

ABSTRACT

In this paper, to investigate the effects of interactions between poly(quaternary ammonium) salts (PQAs) and poly(ethylene glycol) on their mixed micellar surface structures and properties under spontaneous conditions, a series of PQAs were first designed and synthesized by atom transfer radical polymerization (ATRP) using 2-(dimethylamino) ethyl methacrylate (DMAEMA) quaternized by bromobutane, bromooctane, and bromododecane, respectively. Poly(poly(ethylene glycol) methyl ether methacrylate) (PPEG) with a similar degree of polymerization was also prepared using poly(ethylene glycol) methyl ether methacrylate by ATRP. Next, these PQAs were mixed with an equal weight of PPEG in water to cross-assemble into mixed micelles. The structures and features of these mixed micelles were characterized by fluorescence measurements, transmission electron microscopy (TEM), dynamic light scattering (DLS), phase analysis light scattering (PALS), proton nuclear magnetic resonance ((1)H NMR), and hydrogen-hydrogen correlation spectroscopy nuclear magnetic resonance (H-H COSY NMR). These results suggest that PQAs and PPEG mixtures can cross-assemble into mixed micelles with low CMC. The surface structures, particle sizes, size distributions, and zeta potentials of PQAs and PPEG mixtures can be tailored by varying the alkyl chain length in quaternary ammonium salts, and the alkyl chain length also influences the distribution and the alkyl chain orientation of quaternary ammonium salts on mixed micelle surfaces. In addition, cytotoxicity of these mixed micelles can be markedly reduced by PPEG compared with their corresponding PQAs, but their good antibacterial activities are still maintained to a certain degree, as evaluated by methyl tetrazolium assay (MTT) and minimum inhibitory concentration (MIC). Our present work provides a new avenue for the preparation of biocompatible and antibacterial materials for biomedical applications.


Subject(s)
Micelles , Polyamines/chemistry , Polyethylene Glycols/chemistry , Alkanes/chemistry , Dynamic Light Scattering , Magnetic Resonance Spectroscopy , Methacrylates/chemical synthesis , Methacrylates/chemistry , Microscopy, Electron, Transmission , Particle Size , Polyelectrolytes , Polyethylene Glycols/chemical synthesis , Quaternary Ammonium Compounds/chemistry
2.
Polymers (Basel) ; 16(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543411

ABSTRACT

Thermal conductive coating materials with combination of mechanical robustness, good adhesion and electrical insulation are in high demand in the electronics industry. However, very few progresses have been achieved in constructing a highly thermal conductive composites coating that can conformably coat on desired subjects for efficient thermal dissipation, due to their lack of materials design and structure control. Herein, we report a bioinspired thermal conductive coating material from cellulose nanofibers (CNFs), boron nitride (BN), and polydopamine (PDA) by mimicking the layered structure of nacre. Owing to the strong interfacial strength, mechanical robustness, and high thermal conductivity of CNFs, they do not only enhance the exfoliation and dispersion of BN nanoplates, but also bridge BN nanoplates to achieve superior thermal and mechanical performance. The resulting composites coating exhibits a high thermal conductivity of 13.8 W/(m·K) that surpasses most of the reported thermal conductive composites coating owing to the formation of an efficient thermal conductive pathway in the layered structure. Additionally, the coating material has good interface adhesion to conformably wrap around various substrates by scalable spray coating, combined with good mechanical robustness, sustainability, electrical insulation, low-cost, and easy processability, which makes our materials attractive for electronic packaging applications.

3.
J Hazard Mater ; 413: 125449, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33611039

ABSTRACT

Owing to the lower toxicity and mobility of inorganic As(V), the oxidative removal of As(III) is deemed as the optimal approach for arsenic elimination from water. Herein, a synthetic TiO2-supported CuO material (Cu-TiO2) was coupled with sulfite (S(IV)) to remove As(III) at neutral pH. The combined process coupled oxidation with adsorption (i.e., As(III) removal by Cu-TiO2/S(IV)) was superior than a divided preoxidation-adsorption process (i.e., As(V) removal by Cu-TiO2) for arsenic removal. Attractively, low concentration of As(III) (50-300 µg L-1) could be completely removed by Cu-TiO2 (0.25 g L-1)/S(IV) (0.5 mM) within 60 min. Mechanism investigations revealed that the efficient As(III) removal was attributed to the continuous oxysulfur radicals (SOx•-) oxidation and Cu-TiO2 adsorption. The surface-adsorbed and free sulfate radicals (SO4•-) were further identified as the crucial oxidizing species. The Cu-TiO2 played the dual roles as a catalyst for S(IV) activation and an absorbent for arsenic immobility. The influence of operating parameters (i.e., As(III) concentration and sulfite dosage) and water chemistry (i.e., pH, inorganic anions, dissolved organic matters, and temperature) on As(III) removal were systematically investigated and optimized. Overall, the proposed process has potential application prospects in rehabilitating the As(III)-polluted water environment using industrial waste sulfite.

4.
Biomater Sci ; 8(24): 6890-6902, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32672290

ABSTRACT

Creating hierarchical polymer brushes possessing antifouling and bactericidal functionalities is a promising approach to combat biomaterial-associated infections. Hence, a well-constructed hierarchical structure is required to achieve optimized antibacterial performance. In this work, contact-killing cationic bactericidal poly(quaternary ammonium salts) (PQAs) bearing different alkyl chain lengths and zwitterionic antifouling poly(sulfobetaine methacrylate) (PSBMA) functional segments were grafted onto an activated substrate via surface-initiated atom transfer radical polymerization (SI-ATRP), and three kinds of polymer brushes with different architectures (Si-PQAs-b-PSBMA, Si-PSBMA-b-PQAs and Si-PQAs-r-PSBMA) were constructed. We demonstrate that the antibacterial effect simultaneously depends on the alkyl chain lengths of PQAs and the hierarchical structure of cationic/zwitterionic segments in polymer brushes. When the polymer brushes composed of a bactericidal bottom layer and an antifouling top layer, the ideal alkyl chain length of PQAs should be eight carbon atoms (Si-PQA8C-b-PSBMA), while in the opposite hierarchical structure, the optimized alkyl chain length of PQAs to synergize with PSBMA was four carbon atoms (Si-PSBMA-b-PQA4C). By appropriately adjusting the alkyl chain length or the hierarchical architecture, the interference between the antifouling and bactericidal functions could be avoided, thus achieving the outstanding long-term antibacterial performance against S. aureus, as well as good hemocompatibility and low cytotoxicity. This work provides fundamental guidance for the design and optimization of efficient and reliable antibacterial surfaces to inhibit biofilm formation.


Subject(s)
Polymers , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Methacrylates , Surface Properties
5.
Biomater Sci ; 7(12): 5369-5382, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31621697

ABSTRACT

Infections resulting from the attachment of bacteria and biofilm formation on the surface of medical implants give rise to a severe problem for medical device safety. Thus, the development of antibacterial materials that integrate bactericidal and antifouling properties is a promising approach to prevent biomaterial-associated infections. In this study, two types of dopamine-modified polymers, dopamine-terminated quaternary ammonium salt polymer (D-PQAs) with various lengths of N-alkyl chain (D-PQA4C, D-PQA8C, and D-PQA12C) and dopamine-terminated poly(sulfobetaine methacrylate) (D-PSBMA), were synthesized via atom transfer radical polymerization (ATRP). Mixed polymer brushes of D-PQAs and D-PSBMA with various ratios were well-integrated onto the surface of a silicon wafer via a facile mussel-inspired adhesion. We demonstrate that the synergistic antibacterial effect depends on both the ratio of the two components and the surface structures of the mixed polymer brushes, originating from the interactions between D-PQAs and D-PSBMA. The N-alkyl chain length of D-PQAs influenced the distribution and orientation of the alkyl chain on the mixed polymer brushes. A chart of the antibacterial efficiency of the mixed polymer brushes was obtained to reveal the synergistic role of their cationic and zwitterionic chains to resist S. aureus. The dominant amount of antifouling D-PSBMA with a minor amount of bactericidal D-PQAs with a short N-alkyl chain length facilitated the synergistic antibacterial effect. The selected polymer brushes (PSBMA/PQA4C-10%, PSBMA/PQA4C-30%, and PSBMA/PQA8C-10%) could effectively prevent biofilm formation by S. aureus for a long time, while having good biocompatibility. This work may provide a universal design strategy for the preparation of anti-biofilm and biocompatible surfaces for biomedical applications.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biofilms/drug effects , Dopamine/chemistry , Staphylococcus aureus/growth & development , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Biofilms/growth & development , Biofouling/prevention & control , Cell Line , Drug Synergism , Methacrylates/chemical synthesis , Methacrylates/chemistry , Methacrylates/pharmacology , Mice , Molecular Dynamics Simulation , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Staphylococcus aureus/drug effects , Surface Properties
6.
RSC Adv ; 9(44): 25890-25899, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-35530078

ABSTRACT

Geobacter anodireducens is unique in that it can generate high current densities in bioelectrochemical systems (BES) operating under high salt conditions. This ability is important for the development of BES treating high salt wastewater and microbial desalination cells. Therefore, the genome of G. anodireducens was characterized to identify proteins that might allow this strain to survive in high salt BES. Comparison to other Geobacter species revealed that 81 of its 87 c-type cytochromes had homologs in G. soli and G. sulfurreducens. Genes coding for many extracellular electron transfer proteins were also detected, including the outer membrane c-type cytochromes OmcS and OmcZ and the soluble c-type cytochrome PgcA. G. anodireducens also appears to have numerous membrane complexes involved in the translocation of protons and sodium ions and channels that provide protection against osmotic shock. In addition, it has more DNA repair genes than most Geobacter species, suggesting that it might be able to more rapidly repair DNA damage caused in high salt and low pH anode environments. Although this genomic analysis provides invaluable insight into mechanisms used by G. anodireducens to survive in high salt BES, genetic, transcriptomic, and proteomic studies will need to be done to validate their roles.

7.
Carbohydr Res ; 419: 33-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26649917

ABSTRACT

To improve the sensitive and specific detection of metastasis of lung cancer, this study fabricated immune superparamagnetic iron oxide nanoparticles (SPIONs) used in magnetic resonance (MR) immumoimaging. These SPIONs were coated with oleic acid and carboxymethyl dextran, and then conjugated to mouse anti-CD44v6 monoclonal antibody. The physicochemical properties of magnetic nanoparticles without monoclonal antibody were characterized by X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The sizes of the nanoparticles were determined by dynamic light scattering measurements (DLS) and transmission electron microscope (TEM). Coated nanoparticles could well disperse in water with low dosage of CMD as the Fe/CMD ratio is 1/1 and 2/1 (w/w). Importantly, these SPIONs have relatively high saturation magnetization, as measured by vibrating sample magnetometer (VSM). They could efficiently become the transversal relaxation times (T2) contrast agent to improve detection limit through measured in vitro magnetic resonance imaging (MRI) and actively target human lung adenocarcinoma (A549) cells in vitro cell culture. Thus, these immune SPIONs are potentially useful for lung tumor-targeting diagnosis.


Subject(s)
Immunoconjugates/chemistry , Lung Neoplasms/diagnosis , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Dextrans/chemistry , Drug Stability , Humans , Hyaluronan Receptors/immunology , Lung Neoplasms/pathology , Mice , Water/chemistry
8.
Nanoscale ; 8(14): 7711-22, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27001752

ABSTRACT

A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core exposure, resulting from the detachment of the hydrophilic polyethylene glycol (PEG) shell, are similar to the behavior of a nonenveloped virus when trapped in acidic endo-lysosomes. Moreover, the degradation mechanism was verified by gel permeation chromatography (GPC). The endo-lysosomal membrane rupture induced by these transformed micelles is clearly observed by transmission electron microscopy. Consequently, excellent antitumor activity is confirmed both in vitro and in vivo. The results verify that the pHPM could be a promising new drug delivery tool for the treatment of cancer and other diseases.


Subject(s)
Antineoplastic Agents , Biodegradable Plastics , Drug Delivery Systems/methods , Lysosomes/metabolism , Polyethylene Glycols , Polyurethanes , Viruses , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacokinetics , Biodegradable Plastics/pharmacology , Cell Line, Tumor , Female , Humans , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Polyurethanes/chemistry , Polyurethanes/pharmacokinetics , Polyurethanes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL