Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
FASEB J ; 37(11): e23273, 2023 11.
Article in English | MEDLINE | ID: mdl-37874265

ABSTRACT

N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.


Subject(s)
Goats , Methyltransferases , Animals , Female , Methyltransferases/genetics , Methyltransferases/metabolism , Goats/metabolism , Aurora Kinase B , Cyclin D1/genetics , Cell Cycle
2.
FASEB J ; 37(11): e23212, 2023 11.
Article in English | MEDLINE | ID: mdl-37773760

ABSTRACT

As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.


Subject(s)
MicroRNAs , Zearalenone , Animals , Female , Zearalenone/metabolism , Zearalenone/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Zea mays/genetics , Zea mays/metabolism , MicroRNAs/metabolism , Goats/metabolism , Oxidative Stress , Signal Transduction
3.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36724295

ABSTRACT

AIMS: This trial was performed to investigate the effects of combined feeding of Candida utilis CICC 31170, Bacillus coagulans R11, and Lactobacillus acidophilus NCFM and a multi-enzyme complex on the growth performance, immune parameters, feed digestibility, and rumen microbiota of weaned goats. METHODS AND RESULTS: Thirty weaned goats were randomly divided into CON, PRB, and COB groups and fed different diets. End weight and ADG increased significantly in the PRB and COB groups (P < 0.05), and ADFI increased significantly in COB (P < 0.05). On day 80, there was a significant increase in IL-10 content in PRB and COB compared to the CON (P < 0.05). Highly significant increases in rumen papilla width, epithelial cell thickness, stratum spinosum+basale thickness, and stratum corneum thickness were found in PRB and COB (P < 0.05). COB group significantly increased the gene expression of HMGCL and MCT1 in rumen epithelium (P < 0.001). The COB group had the tendency to increase the feed digestibility of dry matter and crude fat compared with the CON group (P < 0.10). The abundance of Prevotellaceae_unclassified was significantly higher in PRB (P < 0.05), and the abundance of Fibrobacteres was significantly higher in COB in comparison to those in CON (P < 0.05). CONCLUSIONS: The results indicate that the dietary potential probiotics and enzymes complex could modulate the growth performance, immunity, feed digestibility, and rumen microbiota in weaned goats.


Subject(s)
Microbiota , Probiotics , Animals , Rumen/metabolism , Goats , Animal Feed/analysis , Diet/veterinary
4.
Cell Tissue Res ; 387(1): 131-142, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34725717

ABSTRACT

RNA N6-methyladenosine (m6A) is essential for many bioprocesses in many species, but its role in goat testis development remains elusive, especially alkB homolog 5 (ALKBH5), one of the m6A demethylases. To this end, nine healthy Haimen goats of different ages were chosen randomly to provide testes. The results showed that the expression level of ALKBH5 was increased significantly (P < 0.05) in the 9-month group compared with the 0-day and 3-month groups, and ALKBH5 was located in goat spermatocytes with the highest expression level compared with Leydig cells and Sertoli cells. Thus, pcDNA3.1-ALKBH5 was constructed to explore the influences of the ALKBH5 increase in goat spermatogonial stem cells (SSC) in vitro. The results showed that the expression level of ALKBH5 in SSC transfected with pcDNA3.1-ALKBH5 (OE_ALKBH5) was significantly increased (P < 0.001) compared with that in SSC transfected with pcDNA3.1-EGFP (EGFP). With ALKBH5 overexpression in SSC, flow cytometry analysis showed that cells at G1 phase were significantly reduced (P < 0.01), while cells at S phase significantly increased (P < 0.01), and cell apoptosis was inhibited. Accordingly, the mRNA degradation of CCND1, CCNE1, and BCL2 was suppressed with ALKBH5 overexpression in SSC after treatment with actinomycin D. Furthermore, the mRNA levels of pluripotency maintenance- and cell differentiation-associated genes were changed between the two groups. Overall, the results indicated the crucial role of ALKBH5 during Haimen goat testis development. The results of this study provide a theoretical basis and technical means for RNA methylation participating in goat testis development.


Subject(s)
Adult Germline Stem Cells/metabolism , AlkB Enzymes/metabolism , Spermatogonia/metabolism , Testis/physiology , Animals , Cell Differentiation , Goats , Humans , Male , Transfection
5.
Biol Reprod ; 105(4): 905-917, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34192747

ABSTRACT

Developmental arrest of somatic cell nuclear transfer (SCNT) embryos first occurs at zygotic/embryonic genome activation (ZGA/EGA), which is critical for preimplantation development. However, study on transcriptome of SCNT embryos during ZGA/EGA is limited. In the present study, we performed RNA sequencing (RNA-seq) of the eight-cell SCNT embryos in goat and provide cross-species analysis of transcriptional activity of SCNT embryos during ZGA/EGA in mice, human, bovine, and goat. RNA-seq data revealed 3966 differentially expressed genes (DEGs) failed to be reprogrammed or activated during EGA of SCNT embryos in goat. Series test of cluster analysis showed four clusters of DEGs and similar changes of the clusters in the four species. Specifically, genes in cluster 3 were somehow upregulated compared with the donor cells and the in vitro fertilization embryo. Moreover, the histone methylation key players and N6-methyladenosine modifiers (SUV39H1, SETDB1, SETD2, KDM5B, IGF2BP1, and YTHDF2) were differentially expressed in SCNT embryos of all species. Finally, we identified three modules correlated with the development of SCNT embryos in mice and screened 288 genes (such as BTG4, WEE1, KLF3, and USP21) that are likely critical for SCNT reprogramming using weighted gene correlation network analysis. Our data will broaden the current understanding of transcriptome activity during stochastic reprogramming events and provide an excellent source for future studies.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/genetics , Goats/embryology , Zygote/metabolism , Animals
6.
Zygote ; 28(1): 51-58, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31746724

ABSTRACT

Minor and major zygotic genome activation (ZGA) are crucial for preimplantation development. During this process, histone variants and methylation influence chromatin accessibility and consequently regulated the expression of zygotic genes. However, the detailed exchanges of these modifications during ZGA remain to be determined. In the present study, the epigenetic modifications of histone 3 on lysine 9 (H3K9), 27 (H3K27) and 36 (H3K36), as well as four histone variants were determined during minor and major ZGA and in post-ZGA stages of mouse embryos. Firstly, microH2A1, H3K27me3 and H3K36me3 were asymmetrically stained in the female pronucleus during minor ZGA but lost staining in major ZGA. Secondly, H3K9me2 and H3K9me3 were strongly stained in the female pronucleus, but weakly stained in the male pronucleus and disappeared after ZGA. Thirdly, H2A.Z and H3.3 were symmetrically stained in male and female pronuclei during minor ZGA. Moreover, H3K27me2 was not statistically changed during mouse early development, while H3K36me2 was only detected in 2- and 4-cell embryos. In conclusion, our data revealed dynamics of histone methylation and variants during mice ZGA and provided details of their exchange in mice embryogenesis. Moreover, we further inferred that macroH2A1, H2A.Z, H3K9me2/3 and H3K27me2/3 may play crucial roles during mouse ZGA.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Genome , Histones/genetics , Mutation , Zygote/metabolism , Animals , Embryo, Mammalian/cytology , Epigenesis, Genetic , Female , Male , Methylation , Mice , Transcriptional Activation , Zygote/cytology
7.
Mol Reprod Dev ; 86(11): 1758-1770, 2019 11.
Article in English | MEDLINE | ID: mdl-31535418

ABSTRACT

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) is a central regulator of mitochondrial biogenesis and metabolism, and its expression is closely related to embryo development. To gain insights into the possible mechanisms of PPARGC1A during early embryogenesis, the development potential, mitochondrial biogenesis, and the culture medium metabolomics of embryos were evaluated when PPARGC1A overexpressed or suppressed in rabbit zygotes. Results showed that different PPARGC1A levels in rabbit zygotes could affect blastocyst percentage, and the expressions of mitochondrial biogenesis and metabolic-related genes, as well as the glutathione and adenosine triphosphate levels during early embryo development. In addition, compared with the controls, 12 and 10 different metabolites involved in carbohydrate, amino acid, and fatty acid metabolism were screened in the 5 day's spent culture medium of PPARGC1A overexpressed and suppressed embryos by gas chromatography-mass spectrometer, respectively. Consistent with these metabolite changes, the transcriptions of genes encoding glucose transporters and fatty acid biosynthetic proteins in the embryos from different groups were regulated by PPARGC1A during rabbit embryo development. Taken together, these data provide evidence that PPARGC1A may regulate early rabbit embryo development through mitochondrial biogenesis and metabolism.


Subject(s)
Blastocyst/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Zygote/metabolism , Animals , Blastocyst/cytology , Female , Rabbits , Zygote/cytology
8.
Reprod Fertil Dev ; 31(5): 855-866, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30641030

ABSTRACT

X (inactive)-specific transcript (Xist) is crucial in murine cloned embryo development, but its role in cloned goats remains unknown. Therefore, in this study we examined the expression and methylation status of Xist in somatic cell nuclear transfer (SCNT) embryos, as well as in ear, lung, and brain tissue of deceased cloned goats. First, the Xist sequence was amplified and a differentially methylated region was identified in oocytes and spermatozoa. Xist methylation levels were greater in SCNT- than intracytoplasmic sperm injection-generated female 8-cell embryos. In addition, compared with naturally bred controls, Xist methylation levels were significantly increased in the ear, lung, and brain tissue of 3-day-old female deceased cloned goats, but were unchanged in the ear tissue of female live cloned goats and in the lung and brain of male deceased cloned goats. Xist expression was significantly increased in the ear tissue of female live cloned goats, but decreased in the lung and brain of female deceased cloned goats. In conclusion, hypermethylation of Xist may have resulted from incomplete reprogramming and may be retained in 3-day-old female deceased cloned goats, subsequently leading to dysregulation of Xist.


Subject(s)
DNA Methylation , Nuclear Transfer Techniques/veterinary , Oocytes/metabolism , RNA, Long Noncoding/metabolism , Spermatozoa/metabolism , Animals , Cloning, Organism , Female , Goats , Male , RNA, Long Noncoding/genetics
9.
Reprod Domest Anim ; 54(3): 538-544, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30570178

ABSTRACT

The sheep callipyge (CLPG) phenotype, a well-known muscular hypertrophy syndrome, is caused by an A-to-G transition in the CLPG1 locus. The mechanisms of CLPG phenotype are very complicated and remain to be further studied. Lacking suitable animal models containing CLPG mutations may partially contribute to these unanswered mechanisms. In this study, we confirmed that the CLPG1 locus, especially the 12-bp CLPG1 motif, is conserved in mammalian animals including rabbit. Then, we generated seven CLPG1-edited rabbits with 100% efficiency using CRISPR/Cas9 system combined with cytoplasm injection technology. All the newborn rabbits were mosaicism with numerous kinds of mutations around the target sites. Among the nine screened potential off-target sites (POTs) for the two sgRNAs used in this study, none off-target effect was detected. This indicated that we efficiently and precisely generated CLPG1-edited rabbits, and we believe that these newly generated rabbits will do help to unravel the mechanisms of the CLPG phenotype in the future.


Subject(s)
CRISPR-Cas Systems , Hypertrophy/genetics , Models, Animal , Muscle, Skeletal/growth & development , Mutation , Animals , Animals, Newborn , Base Sequence , Phenotype , Rabbits
10.
Int J Mol Sci ; 20(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635221

ABSTRACT

The complement 1q binding protein C (C1QBP), also known as p32, is highly expressed in rapidly growing tissues and plays a crucial role in cell proliferation and apoptosis. However, there are no data interpreting its mechanisms in muscle development. To investigate the role of p32 in sheep muscle development, an 856 bp cDNA fragment of p32 containing an 837 bp coding sequence that encodes 278 amino acids was analyzed. We then revealed that the expression of p32 in the longissimus and quadricep muscles of fetal sheep was more significantly up-regulated than expression at other developmental stages. Furthermore, we found that the expression of p32 was increased during myoblasts differentiation in vitro. Additionally, the knockdown of p32 in sheep myoblasts effectively inhibited myoblast differentiation, proliferation, and promoted cell apoptosis in vitro. The interference of p32 also changed the energy metabolism from Oxidative Phosphorylation (OXPHOS) to glycolysis and activated AMP-activated protein kinase (AMPK) phosphorylation in sheep myoblasts in vitro. Taken together, our data suggest that p32 plays a vital role in the development of sheep muscle and provides a potential direction for future research on muscle development and some muscle diseases.


Subject(s)
Apoptosis/genetics , Cell Differentiation/genetics , Gene Expression Regulation , Mitochondrial Proteins/genetics , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , AMP-Activated Protein Kinases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Proliferation , Cloning, Molecular , Energy Metabolism , Glycolysis , Phosphorylation , Sequence Analysis, DNA , Sheep
11.
Biol Reprod ; 99(4): 707-717, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29771291

ABSTRACT

In mammals, their proper development during the early cleavage stages strongly relies on the gene products newly transcribed by zygotic genome activation (ZGA). Long noncoding RNAs (lncRNAs) have been characterized as key regulators of the ZGA process in mice and human. However, the ZGA stage has not yet been identified and epigenetic regulations of the ZGA process remain largely unknown in goats. Here, we show that ZGA occurred at the 8-cell stage in goats. During ZGA, trimethylation of H3K9 was dynamically changed but maintained strong staining in development arrested embryos. Using single-cell RNA sequencing, we identified 800 mRNAs and 250 lncRNAs as candidates of key molecules in goat preimplantation embryos. These mRNAs and lncRNAs were differentially expressed from 4- to 8-cell stage embryos and were strongly enriched in terms of retinoic acid receptor signaling pathway as well as signaling pathway regulating pluripotency of stem cells. In particular, we found that microinjection of siRNA against lnc_137 caused development arrest. Our results are consistent with the notion that lncRNAs play vital roles during ZGA, and the data presented here provide an excellent source for further ZGA lncRNA studies.


Subject(s)
Goats/embryology , Goats/genetics , RNA, Long Noncoding/genetics , Zygote/metabolism , Animals , Embryonic Development/genetics , Female , Gene Knockdown Techniques , Histone Code/genetics , Male , Pregnancy , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , Transcriptional Activation , Transcriptome , Zygote/cytology
12.
Biol Reprod ; 99(3): 650-661, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29668837

ABSTRACT

Long noncoding RNAs (LncRNAs) have been identified as important regulators of testis development; however, their expression patterns and roles in sheep are not yet clear. Thus, we used stranded specific RNA-seq to profile the testis transcriptome (lncRNAs and mRNAs) in premature and mature sheep. Hormone levels and the testis index were examined, and histological analyses were performed at five stages of testis development, 5-day-old (D5), 3-month-old (3M), 6-month-old (6M), 9-month-old (9M), and 2-year-old (2Y), the results of which indicate a significant difference in hormone levels and testis morphometries between the 3M and 9M stages (P < 0.05). Based on the comparison between 3M and 9M samples, we found 1,118 differentially expressed (DE) lncRNAs and 7,253 DE mRNAs in the testes, and qRT-PCR analysis showed that the results correlated well with the transcriptome data. Furthermore, we constructed lncRNA-protein-coding gene interaction networks. Forty-seven DE lncRNA-targeted genes enriched for male reproduction were obtained by cis- and trans-acting; 51 DE lncRNAs and 45 cis-targets, 2 DE lncRNAs and 2 trans-targets were involved in this network. Of these, 5 lncRNAs and their targets, PRKCD, NANOS3, SERPINA5, and CYP19A1, were enriched for spermatogenesis and male gonad development signaling pathways. We further examined the expression levels of 5 candidate lncRNAs and their target genes during testis development. Lastly, the interaction of lncRNA TCONS__00863147 and its target gene PRKCD was validated in vitro in sheep Leydig cells. This study provides a valuable resource for further study of lncRNA function in sheep testis development and spermatogenesis.


Subject(s)
RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sheep/physiology , Testis/growth & development , Testis/metabolism , Animals , Leydig Cells/metabolism , Male , Nucleic Acid Conformation , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Spermatogenesis/genetics , Transcriptome
13.
Reproduction ; 154(2): 111-122, 2017 08.
Article in English | MEDLINE | ID: mdl-28624767

ABSTRACT

During goat follicular development, abnormal expression of nuclear respiratory factor 1 (NRF1) in granulosa cells may drive follicular atresia with unknown regulatory mechanisms. In this study, we investigated the effects of NRF1 on steroidogenesis and cell apoptosis by overexpressing or silencing it in goat luteinized granulosa cells (LGCs). Results showed that knockdown of NRF1 expression significantly inhibited the expression of STAR and CYP19A1, which are involved in sex steroid hormones synthesis, and led to lower estrogen levels. Knockdown of NRF1 resulted in an increased percentage of apoptosis, probably due to the release of cytochrome c from mitochondria, accompanied by upregulating mRNA and protein levels of apoptosis-related markers BAX, caspase 3 and caspase 9. These data indicate that NRF1 might be related with steroidogenesis and cell apoptosis. Furthermore, NRF1 silence reduced mitochondrial transcription factor A (TFAM) transcription activity, mtDNA copy number and ATP level. Simultaneously, knockdown of NRF1 suppressed the transcription and translation levels of SOD, GPx and CAT, decreased glutathione level and increased 8-OHdG level. However, the overexpression of NRF1 in LGCs or gain of TFAM in NRF1 silenced LGCs increased the expression of genes involved in mitochondrial function and biogenesis, and elevated the antioxidant stress system and steroids synthesis. Taken together, aberrant expression of NRF1 could induce mitochondrial dysfunction and disturb the cellular redox balance, which lead to disturbance of steroid hormone synthesis, and trigger LGC apoptosis through the mitochondria-dependent pathway. These findings will be helpful for understanding the role of NRF1 in goat ovarian follicular development and atresia.


Subject(s)
Apoptosis , Estradiol/biosynthesis , Luteal Cells/metabolism , Nuclear Respiratory Factor 1/metabolism , Progesterone/biosynthesis , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Aromatase/genetics , Aromatase/metabolism , Cell Survival , Cells, Cultured , Estrous Cycle/genetics , Estrous Cycle/metabolism , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Goats , Luteal Cells/pathology , Mitochondria/metabolism , Mitochondria/pathology , Nuclear Respiratory Factor 1/genetics , Oxidation-Reduction , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Interference , Signal Transduction , Transfection
14.
Zygote ; 25(4): 462-471, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28669357

ABSTRACT

DNA methylation is an important form of epigenetic regulation in mammalian development. Methyl-CpG-binding domain protein 1 (MBD1) and methyl-CpG-binding domain protein 2 (MeCP2) are two members of the MBD subfamily of proteins that bind methylated CpG to maintain the silencing effect of DNA methylation. Given their important roles in linking DNA methylation with gene silencing, this study characterized the coordinated mRNA expression and protein localization of MBD1 and MeCP2 in embryos and placentas and aimed to analysis the effects of MBD1 and MeCP2 on transgenic cloned goats. Our result showed that MBD1 expression of transgenic cloned embryo increased significantly at the 2-4-cell and 8-16-cell stages (P < 0.05), then decreased at the morula and blastocyst stages (P < 0.05); MeCP2 expression in transgenic cloned embryo was significant decreased at the 2-4-cell stage and increased at the 8-16-cell stage (P < 0.05). Placenta morphology analysis showed that the cotyledon number of deceased transgenic cloned group (DTCG) was significantly lower than that the normal goats (NG) and in the live transgenic cloned goats (LTCG) (P < 0.05). MBD1 and MeCP2 were clearly detectable in the placental trophoblastic binucleate cells by immunohistochemical staining. Moreover, MBD1 and MeCP2 expression in DTCG was significant higher than in the NG and the LTCG (P < 0.05). In summary, aberrant expression of methylation CpG binding proteins MBD1 and MeCP2 was detected in embryonic and placental development, which reflected abnormal transcription regulation and DNA methylation involved in MBD1 and MeCP2. These findings have implications in understanding the low efficiency of transgenic cloning.


Subject(s)
Blastocyst/physiology , Methyl-CpG-Binding Protein 2/metabolism , Placenta/physiology , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Female , Gene Expression Regulation, Developmental , Goats , Methyl-CpG-Binding Protein 2/genetics , Morula/physiology , Pregnancy , Transcription Factors/genetics
15.
J Bioenerg Biomembr ; 48(5): 493-507, 2016 10.
Article in English | MEDLINE | ID: mdl-27896503

ABSTRACT

During goat follicular development, abnormal expression of peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α) in granulosa cells (GCs) may contribute to follicular atresia with unknown regulatory mechanisms. In this study, we investigate the effect of ectopic expression or interference of PGC-1α on cell apoptosis of goat first passage granulosa cells (FGCs) in vitro. The results indicate that PGC-1α silencing by short hairpin RNA (shRNA) in goat FGCs significantly reduced mitochondrial DNA (mtDNA) copy number (P < 0.05), changed mitochondria ultrastructure, and induced cell apoptosis (P < 0.05). The transcription and translation levels of the apoptosis-related genes BCL-2-associated X protein (BAX), caspase 3, and caspase 9 were significantly up-regulated (P < 0.05, respectively). Moreover, the ratio of BAX/B-cell lymphoma 2 (BCL-2) was reduced (P < 0.05), and the release of cytochrome c (cyt c) and lactate dehydrogenase (LDH) was significantly enhanced (P < 0.05, respectively) in PGC-1α interference goat FGCs. Furthermore, the expression of anti-oxidative related genes superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx) and catalase (CAT) was down-regulated (P < 0.05, respectively) and the activity of glutathione/glutathione disulfide (GSH/GSSG) was inhibited (P < 0.05). While enforced expression of PGC-1α increased the levels of genes involved in the regulation of mitochondrial function and biogenesis, and enhanced the anti-oxidative and anti-apoptosis capacity. Taken together, our results reveal that lack of PGC-1α may lead to mitochondrial dysfunction and disrupt the cellular redox balance, thus resulting in goat GCs apoptosis through the mitochondria-dependent apoptotic pathway.


Subject(s)
Apoptosis/drug effects , Granulosa Cells/pathology , Luteinization , Mitochondria/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology , Animals , Cells, Cultured , Female , Gene Expression , Gene Silencing , Goats , Mitochondria/genetics , Mitochondria/ultrastructure , Oxidation-Reduction
16.
Cell Biol Int ; 40(1): 74-82, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26314395

ABSTRACT

Somatic cell nuclear transfer (SCNT) is a useful way to produce cloned animals. However, SCNT animals exhibit DNA methylation and genomic imprinting abnormalities. These abnormalities may be due to the faulty epigenetic reprogramming of donor cells. To investigate the consequence of SCNT on the genomic imprinting and global methylation in the donor cells, growth patterns and apoptosis of cloned goat fibroblast cells (CGFCs) at passage 7 were determined. Growth patterns in CGFCs were similar to the controls; however, the growth rate in log phase was lower and apoptosis in CGFCs were significantly higher (P < 0.01). In addition, quantitative expression analysis of three DNA methyltransferases (Dnmt) and two imprinted genes (H19, IGF2R) was conducted in CGFCs: Dnmt1 and Dnmt3b expression was significantly reduced (P < 0.01), and H19 expression was decreased sixfold (P < 0.01); however, the expression of Dnmt3a was unaltered and IGF2R expression was significantly increased (P < 0.05). Finally, we used bisulfite sequencing PCR to compare the DNA methylation patterns in differentially methylated regions (DMRs) of H19 and IGF2R. The DMRs of H19 (P < 0.01) and IGF2R (P < 0.01) were both highly methylated in CGFCs. These results indicate that the global genome might be hypomethylated. Moreover, there is an aberrant expression of imprinted genes and DMR methylation in CGFCs.


Subject(s)
DNA Modification Methylases/biosynthesis , Fibroblasts/physiology , Genomic Imprinting , Goats/genetics , Goats/metabolism , Nuclear Transfer Techniques/veterinary , Animals , Animals, Genetically Modified , Apoptosis/physiology , Clone Cells , DNA/genetics , DNA Methylation , DNA Modification Methylases/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Genome , Humans , Insulin-Like Growth Factor II/metabolism , Lactoferrin/genetics , RNA, Long Noncoding/genetics , Receptor, IGF Type 2/genetics
17.
Biochem Biophys Res Commun ; 458(4): 783-9, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25681763

ABSTRACT

Goat mammary epithelial cells (GMECs) are a useful model to understand the physiological function of mammary glands and to assess the efficiency of mammary-specific vectors. The aim of this study was to develop an effective and convenient way to evaluate the secretory capacity of GMECs in primary culture. In this study, we developed a reporter system using fluorescent proteins driven by the CSN2 (Capra hircus beta-casein) gene promoter to detect the secretory capacity of GMECs. Additionally, we evaluated the efficiency of the reporter system by determining the expression of cytoskeletal proteins and beta-casein protein. The results suggest that this reporter system provides an easy, convenient and effective method to detect the function of milk synthesis in GMECs. Primary cultures of GMECs were homogeneous and retained the function of milk synthesis, prompting their usefulness as a model for further studies.


Subject(s)
Caseins/genetics , Epithelial Cells/cytology , Genes, Reporter , Goats/physiology , Green Fluorescent Proteins/genetics , Mammary Glands, Human/cytology , Animals , Cells, Cultured , Epithelial Cells/metabolism , Female , Fluorescence , Fluorescent Antibody Technique , Gene Expression , Goats/genetics , Green Fluorescent Proteins/analysis , Humans , Lactation , Mammary Glands, Human/physiology , Microscopy, Fluorescence , Promoter Regions, Genetic
19.
Biology (Basel) ; 13(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927247

ABSTRACT

Mammary gland bioreactors are promising methods for recombinant protein production. Human neutrophil peptide 1 (HNP1) exhibits antibacterial and immune-modulating properties. This study aims to establish a method to generate goats secreting HNP1 using the mammary gland as bioreactors. HNP1 transgenic goats were generated by using CRISPR/Cas9 technology to knock-in (KI) the HNP1 sequence into exon 7 of the goat ß-casein (CSN2) gene under the control of the CSN2 promoter. One-cell stage embryos were cytoplasmically injected with a mixture of Cas9 mRNA, sgRNA, and a homologous plasmid including the T2A-HNP1 sequences, followed by transfer to recipient goats. A total of 22 live offspring goats were delivered, and 21 of these goats (95.45%) exhibited targeted edits at the CSN2 locus, and 2 female goats (9.09%) demonstrated successful HNP1 integration. Western blot and ELISA analyses confirmed the presence of HNP1 protein at high levels in the milk of these HNP1-positive goats, with mean concentrations of 22.10 µg/mL and 0.0092 µg/mL during the initial 60 days of lactation. Furthermore, milk from these transgenic goats exhibited notable antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating the functionality of the expressed HNP1 protein. In conclusion, we established an efficient method for developing new transgenic goat lines as a mammary gland bioreactor, and the bioactive HNP1 protein secreted by the transgenic goat has the potential to combat microbial resistance.

20.
Life Sci ; 349: 122693, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38710277

ABSTRACT

Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.


Subject(s)
Antioxidants , Granulosa Cells , Kelch-Like ECH-Associated Protein 1 , Melatonin , NF-E2-Related Factor 2 , Open Reading Frames , Oxidative Stress , Signal Transduction , Animals , Melatonin/pharmacology , Melatonin/metabolism , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Female , NF-E2-Related Factor 2/metabolism , Sheep , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL