Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nature ; 544(7651): 427-433, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28447635

ABSTRACT

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Hordeum/genetics , Cell Nucleus/genetics , Centromere/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Genetic Variation , Genomics , Haplotypes/genetics , Meiosis/genetics , Repetitive Sequences, Nucleic Acid/genetics , Seeds/genetics
2.
Plant J ; 98(5): 767-782, 2019 06.
Article in English | MEDLINE | ID: mdl-31017340

ABSTRACT

Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.


Subject(s)
Chromosomes, Plant/genetics , Genes, Plant/genetics , Genome Size/genetics , Genome, Plant/genetics , Vigna/genetics , Chromosome Mapping , DNA, Plant/chemistry , DNA, Plant/genetics , Phaseolus/genetics , Retroelements/genetics , Sequence Analysis, DNA/methods , Synteny
3.
Plant J ; 93(6): 1129-1142, 2018 03.
Article in English | MEDLINE | ID: mdl-29356213

ABSTRACT

Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.


Subject(s)
Genes, Plant/genetics , Plant Breeding/methods , Quantitative Trait Loci/genetics , Vigna/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genetics, Population , Genome, Plant/genetics , Genotype , Phylogeny , Polymorphism, Single Nucleotide , Seeds/genetics , Species Specificity , Vigna/classification
4.
Bioinformatics ; 34(13): i43-i51, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29949964

ABSTRACT

Motivation: De novo genome assembly is a challenging computational problem due to the high repetitive content of eukaryotic genomes and the imperfections of sequencing technologies (i.e. sequencing errors, uneven sequencing coverage and chimeric reads). Several assembly tools are currently available, each of which has strengths and weaknesses in dealing with the trade-off between maximizing contiguity and minimizing assembly errors (e.g. mis-joins). To obtain the best possible assembly, it is common practice to generate multiple assemblies from several assemblers and/or parameter settings and try to identify the highest quality assembly. Unfortunately, often there is no assembly that both maximizes contiguity and minimizes assembly errors, so one has to compromise one for the other. Results: The concept of assembly reconciliation has been proposed as a way to obtain a higher quality assembly by merging or reconciling all the available assemblies. While several reconciliation methods have been introduced in the literature, we have shown in one of our recent papers that none of them can consistently produce assemblies that are better than the assemblies provided in input. Here we introduce Novo&Stitch, a novel method that takes advantage of optical maps to accurately carry out assembly reconciliation (assuming that the assembled contigs are sufficiently long to be reliably aligned to the optical maps, e.g. 50 Kbp or longer). Experimental results demonstrate that Novo&Stitch can double the contiguity (N50) of the input assemblies without introducing mis-joins or reducing genome completeness. Availability and implementation: Novo&Stitch can be obtained from https://github.com/ucrbioinfo/Novo_Stitch.


Subject(s)
Contig Mapping/methods , Eukaryota/genetics , Genome , Sequence Analysis, DNA/methods , Software , Phytophthora infestans/genetics , Vigna/genetics
5.
Plant J ; 89(5): 1042-1054, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27775877

ABSTRACT

Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.


Subject(s)
Crops, Agricultural/genetics , Crops, Agricultural/physiology , Vigna/genetics , Vigna/physiology , Chromosomes, Artificial, Bacterial , Chromosomes, Plant/genetics , Climate , Food Supply , Genome, Plant/genetics , Genotype
6.
Plant J ; 84(1): 216-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26252423

ABSTRACT

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Genome, Plant/genetics , Hordeum/genetics , Molecular Sequence Data
7.
Bioinformatics ; 31(18): 2972-80, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25995232

ABSTRACT

MOTIVATION: As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. RESULTS: We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. AVAILABILITY AND IMPLEMENTATION: Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs CONTACT: stelo@cs.ucr.edu or timothy.close@ucr.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Computational Biology/methods , Fabaceae/genetics , High-Throughput Nucleotide Sequencing/methods , Hordeum/genetics , Sequence Analysis, DNA/methods , Software , Chromosomes, Artificial, Bacterial , Sequence Alignment
8.
BMC Genomics ; 16: 236, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25879410

ABSTRACT

BACKGROUND: The problem of supervised DNA sequence classification arises in several fields of computational molecular biology. Although this problem has been extensively studied, it is still computationally challenging due to size of the datasets that modern sequencing technologies can produce. RESULTS: We introduce CLARK a novel approach to classify metagenomic reads at the species or genus level with high accuracy and high speed. Extensive experimental results on various metagenomic samples show that the classification accuracy of CLARK is better or comparable to the best state-of-the-art tools and it is significantly faster than any of its competitors. In its fastest single-threaded mode CLARK classifies, with high accuracy, about 32 million metagenomic short reads per minute. CLARK can also classify BAC clones or transcripts to chromosome arms and centromeric regions. CONCLUSIONS: CLARK is a versatile, fast and accurate sequence classification method, especially useful for metagenomics and genomics applications. It is freely available at http://clark.cs.ucr.edu/ .


Subject(s)
Algorithms , Metagenomics , Genomics , Internet , User-Computer Interface
9.
BMC Genomics ; 15: 328, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24885083

ABSTRACT

BACKGROUND: Heat-induced browning (Hbs) of seed coats is caused by high temperatures which discolors the seed coats of many legumes, affecting the visual appearance and quality of seeds. The genetic determinants underlying Hbs in cowpea are unknown. RESULTS: We identified three QTL associated with the heat-induced browning of seed coats trait, Hbs-1, Hbs-2 and Hbs-3, using cowpea RIL populations IT93K-503-1 (Hbs positive) x CB46 (hbs negative) and IT84S-2246 (Hbs positive) x TVu14676 (hbs negative). Hbs-1 was identified in both populations, accounting for 28.3% -77.3% of the phenotypic variation. SNP markers 1_0032 and 1_1128 co-segregated with the trait. Within the syntenic regions of Hbs-1 in soybean, Medicago and common bean, several ethylene forming enzymes, ethylene responsive element binding factors and an ACC oxidase 2 were observed. Hbs-1 was identified in a BAC clone in contig 217 of the cowpea physical map, where ethylene forming enzymes were present. Hbs-2 was identified in the IT93K-503-1 x CB46 population and accounted for of 9.5 to 12.3% of the phenotypic variance. Hbs-3 was identified in the IT84S-2246 x TVu14676 population and accounted for 6.2 to 6.8% of the phenotypic variance. SNP marker 1_0640 co-segregated with the heat-induced browning phenotype. Hbs-3 was positioned on BAC clones in contig512 of the cowpea physical map, where several ACC synthase 1 genes were present. CONCLUSION: The identification of loci determining heat-induced browning of seed coats and co-segregating molecular markers will enable transfer of hbs alleles into cowpea varieties, contributing to higher quality seeds.


Subject(s)
Fabaceae/genetics , Genetic Markers , Hot Temperature , Seeds/growth & development , Fabaceae/embryology , Quantitative Trait Loci
10.
PLoS Comput Biol ; 9(4): e1003010, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23592960

ABSTRACT

For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.


Subject(s)
Contig Mapping/methods , Hordeum/genetics , Sequence Analysis, DNA , Chromosomes, Artificial, Bacterial , Cloning, Molecular , Computational Biology/methods , Computer Simulation , Genes, Plant , Genetic Markers/genetics , Genomic Library , Genomics , Models, Genetic , Oryza/genetics , Physical Chromosome Mapping , Species Specificity
11.
Theor Appl Genet ; 124(4): 685-95, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22069119

ABSTRACT

The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties. Two cDNA libraries were developed: one from root tissue (CASR), the other from leaf, stem and stem meristem tissue (CASL). Sequencing generated 706 contigs and 3,430 singletons. These sequences were combined with those from two other EST sequencing initiatives and filtered based on the sequence quality. Quality sequences were aligned using CAP3 and embedded in a Windows browser called HarvEST:Cassava which is made available. HarvEST:Cassava consists of a Unigene set of 22,903 quality sequences. A total of 2,954 putative SNPs were identified. Of these 1,536 SNPs from 1,170 contigs and 53 cassava genotypes were selected for SNP validation using Illumina's GoldenGate assay. As a result 1,190 SNPs were validated technically and biologically. The location of validated SNPs on scaffolds of the cassava genome sequence (v.4.1) is provided. A diversity assessment of 53 cassava varieties reveals some sub-structure based on the geographical origin, greater diversity in the Americas as opposed to Africa, and similar levels of diversity in West Africa and southern, eastern and central Africa. The resources presented allow for improved genetic dissection of economically important traits and the application of modern genomics-based approaches to cassava breeding and conservation.


Subject(s)
Genes, Plant/genetics , High-Throughput Nucleotide Sequencing , Manihot/genetics , Plant Roots/genetics , Polymorphism, Single Nucleotide/genetics , Africa , Chromosome Mapping , DNA, Complementary/genetics , DNA, Plant/genetics , Expressed Sequence Tags , Gene Library , Genotype , Manihot/growth & development , Phylogeny , Plant Roots/growth & development
12.
BMC Genet ; 13: 9, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22360875

ABSTRACT

BACKGROUND: Accurate genetic maps are the cornerstones of genetic discovery, but their construction can be hampered by missing parental genotype information. Inference of parental haplotypes and correction of phase errors can be done manually on a one by one basis with the aide of current software tools, but this is tedious and time consuming for the high marker density datasets currently being generated for many crop species. Tools that help automate the process of inferring parental genotypes can greatly speed the process of map building. We developed a software tool that infers and outputs missing parental genotype information based on observed patterns of segregation in mapping populations. When phases are correctly inferred, they can be fed back to the mapping software to quickly improve marker order and placement on genetic maps. RESULTS: ParentChecker is a user-friendly tool that uses the segregation patterns of progeny to infer missing genotype information of parental lines that have been used to construct a mapping population. It can also be used to automate correction of linkage phase errors in genotypic data that are in ABH format. CONCLUSION: ParentChecker efficiently improves genetic mapping datasets for cases where parental information is incomplete by automating the process of inferring missing genotypes of inbred mapping populations and can also be used to correct linkage phase errors in ABH formatted datasets.


Subject(s)
Chromosome Mapping/methods , Genetic Linkage , Genotype , Software , Parents
13.
Proc Natl Acad Sci U S A ; 106(43): 18159-64, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19826088

ABSTRACT

Consensus genetic linkage maps provide a genomic framework for quantitative trait loci identification, map-based cloning, assessment of genetic diversity, association mapping, and applied breeding in marker-assisted selection schemes. Among "orphan crops" with limited genomic resources such as cowpea [Vigna unguiculata (L.) Walp.] (2n = 2x = 22), the use of transcript-derived SNPs in genetic maps provides opportunities for automated genotyping and estimation of genome structure based on synteny analysis. Here, we report the development and validation of a high-throughput EST-derived SNP assay for cowpea, its application in consensus map building, and determination of synteny to reference genomes. SNP mining from 183,118 ESTs sequenced from 17 cDNA libraries yielded approximately 10,000 high-confidence SNPs from which an Illumina 1,536-SNP GoldenGate genotyping array was developed and applied to 741 recombinant inbred lines from six mapping populations. Approximately 90% of the SNPs were technically successful, providing 1,375 dependable markers. Of these, 928 were incorporated into a consensus genetic map spanning 680 cM with 11 linkage groups and an average marker distance of 0.73 cM. Comparison of this cowpea genetic map to reference legumes, soybean (Glycine max) and Medicago truncatula, revealed extensive macrosynteny encompassing 85 and 82%, respectively, of the cowpea map. Regions of soybean genome duplication were evident relative to the simpler diploid cowpea. Comparison with Arabidopsis revealed extensive genomic rearrangement with some conserved microsynteny. These results support evolutionary closeness between cowpea and soybean and identify regions for synteny-based functional genomics studies in legumes.


Subject(s)
Expressed Sequence Tags , Fabaceae/genetics , Polymorphism, Single Nucleotide , Chromosome Mapping , Chromosomes, Plant , Evolution, Molecular , Genotype
14.
BMC Genomics ; 10: 582, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19961604

ABSTRACT

BACKGROUND: High density genetic maps of plants have, nearly without exception, made use of marker datasets containing missing or questionable genotype calls derived from a variety of genic and non-genic or anonymous markers, and been presented as a single linear order of genetic loci for each linkage group. The consequences of missing or erroneous data include falsely separated markers, expansion of cM distances and incorrect marker order. These imperfections are amplified in consensus maps and problematic when fine resolution is critical including comparative genome analyses and map-based cloning. Here we provide a new paradigm, a high-density consensus genetic map of barley based only on complete and error-free datasets and genic markers, represented accurately by graphs and approximately by a best-fit linear order, and supported by a readily available SNP genotyping resource. RESULTS: Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Data from three barley doubled haploid mapping populations supported the production of an initial consensus map. Over 200 germplasm selections, principally European and US breeding material, were used to estimate minor allele frequency (MAF) for each SNP. We selected 3,072 of these tested SNPs based on technical performance, map location, MAF and biological interest to fill two 1536-SNP "production" assays (BOPA1 and BOPA2), which were made available to the barley genetics community. Data were added using BOPA1 from a fourth mapping population to yield a consensus map containing 2,943 SNP loci in 975 marker bins covering a genetic distance of 1099 cM. CONCLUSION: The unprecedented density of genic markers and marker bins enabled a high resolution comparison of the genomes of barley and rice. Low recombination in pericentric regions is evident from bins containing many more than the average number of markers, meaning that a large number of genes are recombinationally locked into the genetic centromeric regions of several barley chromosomes. Examination of US breeding germplasm illustrated the usefulness of BOPA1 and BOPA2 in that they provide excellent marker density and sensitivity for detection of minor alleles in this genetically narrow material.


Subject(s)
Hordeum/genetics , Polymorphism, Single Nucleotide , Alleles , Genetic Linkage , Genetic Markers , Genetic Techniques , Genotype
15.
BMC Plant Biol ; 9: 65, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19480680

ABSTRACT

BACKGROUND: A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification of SNPs or insertion/deletions (INDELs) for high throughput genotyping and high density mapping. Here we applied SFP markers to a lingering question about the source of salt tolerance in a particular rice recombinant inbred line (RIL) derived from a salt tolerant and salt sensitive parent. RESULTS: Expression data obtained by hybridizing RNA to an oligonucleotide array were analyzed using a statistical method called robustified projection pursuit (RPP). By applying the RPP method, a total of 1208 SFP probes were detected between two presumed parental genotypes (Pokkali and IR29) of a RIL population segregating for salt tolerance. We focused on the Saltol region, a major salt tolerance QTL. Analysis of FL478, a salt tolerant RIL, revealed a small (< 1 Mb) region carrying alleles from the presumed salt tolerant parent, flanked by alleles matching the salt sensitive parent IR29. Sequencing of putative SFP-containing amplicons from this region and other positions in the genome yielded a validation rate more than 95%. CONCLUSION: Recombinant inbred line FL478 contains a small (< 1 Mb) segment from the salt tolerant parent in the Saltol region. The Affymetrix rice genome array provides a satisfactory platform for high resolution mapping in rice using RNA hybridization and the RPP method of SFP analysis.


Subject(s)
Genome, Plant , Oligonucleotide Array Sequence Analysis/methods , Oryza/genetics , Polymorphism, Genetic , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Expression , Genetic Markers , Molecular Sequence Data , Quantitative Trait Loci , RNA, Plant/genetics , Salt-Tolerant Plants/genetics , Sequence Analysis, DNA
16.
Nucleic Acids Res ; 35(9): 2936-43, 2007.
Article in English | MEDLINE | ID: mdl-17439961

ABSTRACT

We report mapping of translocation breakpoints using a microarray. We used complex RNA to compare normal hexaploid wheat (17,000 Mb genome) to a ditelosomic stock missing the short arm of chromosome 1B (1BS) and wheat-rye translocations that replace portions of 1BS with rye 1RS. Transcripts detected by a probe set can come from all three Triticeae genomes in ABD hexaploid wheat, and sequences of homoeologous genes on 1AS, 1BS and 1DS often differ from each other. Absence or replacement of 1BS therefore must sometimes result in patterns within a probe set that deviate from hexaploid wheat. We termed these 'high variance probe sets' (HVPs) and examined the extent to which HVPs associated with 1BS aneuploidy are related to rice genes on syntenic rice chromosome 5 short arm (5S). We observed an enrichment of such probe sets to 15-20% of all HVPs, while 1BS represents approximately 2% of the total genome. In total 257 HVPs constitute wheat 1BS markers. Two wheat-rye translocations subdivided 1BS HVPs into three groups, allocating translocation breakpoints to narrow intervals defined by rice 5S coordinates. This approach could be extended to the entire wheat genome or any organism with suitable aneuploid or translocation stocks.


Subject(s)
Chromosome Breakage , Chromosome Mapping/methods , Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , Translocation, Genetic , Triticum/genetics , Data Interpretation, Statistical , Genetic Markers , Genome, Plant , Oligonucleotide Probes , Oryza/genetics
17.
BMC Genomics ; 9: 107, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18307807

ABSTRACT

BACKGROUND: Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. RESULTS: Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. CONCLUSION: We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources.


Subject(s)
Fabaceae/genetics , Genome, Plant/genetics , Glycine max/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Genetic , Animals , Crops, Agricultural/genetics , DNA/genetics , Electrophoresis, Agar Gel , Genetic Markers/genetics , Humans , Mice , Nucleic Acid Hybridization , Polymerase Chain Reaction , RNA, Complementary/genetics , Reproducibility of Results , Sequence Alignment
18.
Sci Data ; 4: 170044, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28448065

ABSTRACT

Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. 'Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).


Subject(s)
Genome, Plant , Hordeum/genetics , Chromosome Mapping , Sequence Analysis
19.
Mol Breed ; 35: 36, 2015.
Article in English | MEDLINE | ID: mdl-25620880

ABSTRACT

The cowpea aphid Aphis craccivora Koch (CPA) is a destructive insect pest of cowpea, a staple legume crop in Sub-Saharan Africa and other semiarid warm tropics and subtropics. In California, CPA causes damage on all local cultivars from early vegetative to pod development growth stages. Sources of CPA resistance are available in African cowpea germplasm. However, their utilization in breeding is limited by the lack of information on inheritance, genomic location and marker linkage associations of the resistance determinants. In the research reported here, a recombinant inbred line (RIL) population derived from a cross between a susceptible California blackeye cultivar (CB27) and a resistant African breeding line (IT97K-556-6) was genotyped with 1,536 SNP markers. The RILs and parents were phenotyped for CPA resistance using field-based screenings during two main crop seasons in a 'hotspot' location for this pest within the primary growing region of the Central Valley of California. One minor and one major quantitative trait locus (QTL) were consistently mapped on linkage groups 1 and 7, respectively, both with favorable alleles contributed from IT97K-556-6. The major QTL appeared dominant based on a validation test in a related F2 population. SNP markers flanking each QTL were positioned in physical contigs carrying genes involved in plant defense based on synteny with related legumes. These markers could be used to introgress resistance alleles from IT97K-556-6 into susceptible local blackeye varieties by backcrossing.

SELECTION OF CITATIONS
SEARCH DETAIL