ABSTRACT
Anti-CD20 monoclonal antibodies (mAbs) are successfully used in the management of non-Hodgkin lymphomas and chronic lymphocytic leukemia. We have reported previously that statins induce conformational changes in CD20 molecules and impair rituximab-mediated complement-dependent cytotoxicity. Here we investigated in more detail the influence of farnesyltransferase inhibitors (FTIs) on CD20 expression and antitumor activity of anti-CD20 mAbs. Among all FTIs studied, L-744,832 had the most significant influence on CD20 levels. It significantly increased rituximab-mediated complement-dependent cytotoxicity against primary tumor cells isolated from patients with non-Hodgkin lymphomas or chronic lymphocytic leukemia and increased CD20 expression in the majority of primary lymphoma/leukemia cells. Incubation of Raji cells with L-744,832 led to up-regulation of CD20 at mRNA and protein levels. Chromatin immunoprecipitation assay revealed that inhibition of farnesyltransferase activity was associated with increased binding of PU.1 and Oct-2 to the CD20 promoter sequences. These studies indicate that CD20 expression can be modulated by FTIs. The combination of FTIs with anti-CD20 mAbs is a promising therapeutic approach, and its efficacy should be examined in patients with B-cell tumors.
Subject(s)
Antibodies, Monoclonal/chemistry , Antigens, CD20/biosynthesis , Complement System Proteins/chemistry , Dimethylallyltranstransferase/physiology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Chromatin Immunoprecipitation , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Flow Cytometry/methods , HEK293 Cells , Humans , Lymphoma, B-Cell/metabolism , Methionine/analogs & derivatives , Methionine/pharmacology , Promoter Regions, GeneticABSTRACT
Histone deacetylases inhibitors (HDACi) have recently emerged as potent antitumor treatment modality. They are currently tested in many phase I, II and III clinical trials as single agents as wells as in combination schemes. They have demonstrated promising antitumor activity and favorable clinical outcome. Histone deacetylases (HDACs) are involved in the process of epigenetic regulation of gene expression. Epigenetic changes are believed to be crucial for the onset and progression of cancer and have recently gained remarkable attention. Since epigenetic regulation of gene expression is a reversible process, targeting histone deacetylases provides a good rationale for anticancer therapy. The acetylation status of histones regulates the organization of chromatin and the access of transcription factors. Moreover, functions of many non-histone proteins are controlled by acetylation. The broad and complicated influences of HDACi on various molecular processes may account for the observed pleiotropic effects. In this review we summarize recent advances in the understanding of biology of HDACs and mechanism of action of their inhibitors.