Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Blood ; 136(17): 1919-1932, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32573733

ABSTRACT

RUNX1 is among the most frequently mutated genes in human leukemia, and the loss or dominant-negative suppression of RUNX1 function is found in myelodysplastic syndrome and acute myeloid leukemia (AML). How posttranslational modifications (PTMs) of RUNX1 affect its in vivo function, however, and whether PTM dysregulation of RUNX1 can cause leukemia are largely unknown. We performed targeted deep sequencing on a family with 3 occurrences of AML and identified a novel RUNX1 mutation, R237K. The mutated R237 residue is a methylation site by protein arginine methyltransferase 1, and loss of methylation reportedly impairs the transcriptional activity of RUNX1 in vitro. To explore the biologic significance of RUNX1 methylation in vivo, we used RUNX1 R233K/R237K double-mutant mice, in which 2 arginine-to-lysine mutations precluded RUNX1 methylation. Genetic ablation of RUNX1 methylation led to loss of quiescence and expansion of hematopoietic stem cells (HSCs), and it changed the genomic and epigenomic signatures of phenotypic HSCs to a poised progenitor state. Furthermore, loss of RUNX1 R233/R237 methylation suppressed endoplasmic reticulum stress-induced unfolded protein response genes, including Atf4, Ddit3, and Gadd34; the radiation-induced p53 downstream genes Bbc3, Pmaip1, and Cdkn1a; and subsequent apoptosis in HSCs. Mechanistically, activating transcription factor 4 was identified as a direct transcriptional target of RUNX1. Collectively, defects in RUNX1 methylation in HSCs confer resistance to apoptosis and survival advantage under stress conditions, a hallmark of a preleukemic clone that may predispose affected individuals to leukemia. Our study will lead to a better understanding of how dysregulation of PTMs can contribute to leukemogenesis.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoietic Stem Cells/physiology , Leukemia/genetics , Methyltransferases/metabolism , Protein Processing, Post-Translational/genetics , Animals , Apoptosis/genetics , Cell Survival/genetics , Family , Female , Genetic Predisposition to Disease , Genotype , Hematopoietic Stem Cells/metabolism , Humans , Leukemia/metabolism , Leukemia/pathology , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Mutation, Missense , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Pedigree
2.
Blood ; 136(15): 1735-1747, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32542325

ABSTRACT

Hematopoietic stem cells (HSCs) have the potential to replenish the blood system for the lifetime of the organism. Their 2 defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Using conditional gene-knockout models, we demonstrated a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance in both the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 colocalizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell cycling, and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin, and Tip60 deletion induced a robust reduction in the acH2A.Z/H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance, at least in part through Tip60-dependent H2A.Z acetylation to activate Myc target genes.


Subject(s)
Cell Self Renewal/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Lysine Acetyltransferase 5/genetics , Trans-Activators/genetics , Animals , Biomarkers , Cell Cycle , Cell Differentiation/genetics , DNA Damage , Gene Expression Profiling , Gene Expression Regulation , Histones/metabolism , Lysine Acetyltransferase 5/metabolism , Mice , Protein Transport , Trans-Activators/metabolism
3.
Adv Exp Med Biol ; 962: 117-138, 2017.
Article in English | MEDLINE | ID: mdl-28299655

ABSTRACT

The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.


Subject(s)
Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Stem Cells/metabolism , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Epithelium/metabolism , Hair Follicle/metabolism , Hair Follicle/physiology , Humans , Skin/metabolism , Skin/physiopathology
4.
Blood ; 122(4): 562-6, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23741011

ABSTRACT

The RUNX family genes encode transcription factors that are involved in development and human diseases. RUNX1 is one of the most frequently mutated genes in human hematological malignancies and is a critical factor for the generation and maintenance of hematopoietic stem cells. Another Runx family gene, Runx3, is known to be expressed in hematopoietic cells. However, its involvement in hematopoiesis remains unclear. Here we show the hematopoietic phenotypes in Runx3 conditional knockout (KO) mice (Runx3(fl/fl);Mx1-Cre(+)): whereas young Runx3 KO mice did not exhibit any significant hematopoietic defects, aged Runx3 KO mice developed a myeloproliferative disorder characterized by myeloid-dominant leukocytosis, splenomegaly, and an increase of hematopoietic stem/progenitor cells (HSPCs). Notably, Runx3-deficient cells showed hypersensitivity to granulocyte-colony stimulating factor, suggesting enhanced proliferative and mobilization capability of Runx3-deficient HSPCs when stimulated. These results suggest that, besides Runx1, Runx3 also plays a role in hematopoiesis.


Subject(s)
Aging/physiology , Core Binding Factor Alpha 3 Subunit/genetics , Hematopoiesis/genetics , Myeloproliferative Disorders/genetics , Aging/blood , Aging/genetics , Animals , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/deficiency , Gene Transfer Techniques , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Hematopoiesis/physiology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloproliferative Disorders/pathology
5.
Haematologica ; 100(4): 431-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25616574

ABSTRACT

Mouse knockouts of Cdk2 and Cdk4 are individually viable whereas the double knockouts are embryonic lethal due to heart defects, and this precludes the investigation of their overlapping roles in definitive hematopoiesis. Here we use a conditional knockout mouse model to investigate the effect of combined loss of Cdk2 and Cdk4 in hematopoietic cells. Cdk2(fl/fl)Cdk4(-/-)vavCre mice are viable but displayed a significant increase in erythrocyte size. Cdk2(fl/fl)Cdk4(-/-)vavCre mouse bone marrow exhibited reduced phosphorylation of the retinoblastoma protein and reduced expression of E2F target genes such as cyclin A2 and Cdk1. Erythroblasts lacking Cdk2 and Cdk4 displayed a lengthened G1 phase due to impaired phosphorylation of the retinoblastoma protein. Deletion of the retinoblastoma protein rescued the increased size displayed by erythrocytes lacking Cdk2 and Cdk4, indicating that the retinoblastoma/Cdk2/Cdk4 pathway regulates erythrocyte size. The recovery of platelet counts following a 5-fluorouracil challenge was delayed in Cdk2(fl/fl)Cdk4(-/-)vavCre mice revealing a critical role for Cdk2 and Cdk4 in stress hematopoiesis. Our data indicate that Cdk2 and Cdk4 play important overlapping roles in homeostatic and stress hematopoiesis, which need to be considered when using broad-spectrum cyclin-dependent kinase inhibitors for cancer therapy.


Subject(s)
Blood Platelets/metabolism , Cyclin-Dependent Kinase 2/genetics , Erythrocytes/cytology , Hematopoiesis/genetics , Stress, Physiological , Animals , Cell Size , Cyclin-Dependent Kinase 2/deficiency , Cyclin-Dependent Kinase 4/deficiency , Cyclin-Dependent Kinase 4/genetics , Female , Gene Deletion , Hematocrit , Hematopoietic Stem Cells/metabolism , Immunophenotyping , Male , Mice , Mice, Knockout , Phenotype , Ploidies , Retinoblastoma Protein/genetics
6.
Gene ; 928: 148761, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39002785

ABSTRACT

Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Animals , Humans , Mice , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Leukemic , Integrin alpha Chains/metabolism , Integrin alpha Chains/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice, Inbred C57BL , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Osteopontin/genetics , Osteopontin/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Stem Cell Niche
7.
Exp Hematol ; 137: 104255, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876252

ABSTRACT

The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.


Subject(s)
Cell Proliferation , Leukemia, Megakaryoblastic, Acute , Receptors, Notch , Signal Transduction , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Leukemia, Megakaryoblastic, Acute/metabolism , Humans , Animals , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mice , Cell Survival , Cell Line, Tumor , Mutation , Female , Male
8.
Front Immunol ; 14: 1282758, 2023.
Article in English | MEDLINE | ID: mdl-38274800

ABSTRACT

Adoptive cellular immunotherapy as a new paradigm to treat cancers is exemplified by the FDA approval of six chimeric antigen receptor-T cell therapies targeting hematological malignancies in recent years. Conventional αß T cells applied in these therapies have proven efficacy but are confined almost exclusively to autologous use. When infused into patients with mismatched human leukocyte antigen, αß T cells recognize tissues of such patients as foreign and elicit devastating graft-versus-host disease. Therefore, one way to overcome this challenge is to use naturally allogeneic immune cell types, such as γδ T cells. γδ T cells occupy the interface between innate and adaptive immunity and possess the capacity to detect a wide variety of ligands on transformed host cells. In this article, we review the fundamental biology of γδ T cells, including their subtypes, expression of ligands, contrasting roles in and association with cancer prognosis or survival, as well as discuss the gaps in knowledge pertaining to this cell type which we currently endeavor to elucidate. In addition, we propose how to harness the unique properties of γδ T cells for cellular immunotherapy based on lessons gleaned from past clinical trials and provide an update on ongoing trials involving these cells. Lastly, we elaborate strategies that have been tested or can be explored to improve the anti-tumor activity and durability of γδ T cells in vivo.


Subject(s)
Graft vs Host Disease , Neoplasms , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Immunotherapy, Adoptive , Immunotherapy , Neoplasms/metabolism
9.
Cells ; 12(2)2023 01 13.
Article in English | MEDLINE | ID: mdl-36672244

ABSTRACT

Immune checkpoint blockade (ICB) therapy involves the inhibition of immune checkpoint regulators which reverses their limitation of T cell anti-tumor responses and results in long-lasting tumor regression. However, poor clinical response or tumor relapse was observed in some patients receiving such therapy administered via antibodies blocking the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway alone or in combination, suggesting the involvement of additional immune checkpoints. CD96, a possible immune checkpoint, was previously shown to suppress natural killer (NK) cell anti-tumor activity but its role in human T cells remains controversial. Here, we demonstrate that CRISPR/Cas9-based deletion of CD96 in human T cells enhanced their killing of leukemia cells in vitro. T cells engineered with a chimeric antigen receptor (CAR) comprising human epidermal growth factor receptor 2 (EGFR2/HER2)-binding extracellular region and intracellular regions of CD96 and CD3ζ (4D5-96z CAR-T cells) were less effective in suppressing the growth of HER2-expressing tumor cells in vitro and in vivo compared with counterparts bearing CAR that lacked CD96 endodomain (4D5-z CAR-T cells). Together, our findings implicate a role for CD96 endodomain in attenuating T cell cytotoxicity and support combination tumor immunotherapy targeting multiple rather than single immune checkpoints.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Neoplasms/metabolism , Killer Cells, Natural , Immunotherapy/methods , Receptors, Chimeric Antigen/metabolism , Antigens, CD/metabolism
10.
Gene ; 851: 147049, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36384171

ABSTRACT

A cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreERT2 transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24 m). Kinetic analysis of labeled cells after tamoxifen injection and transplantation assays revealed that eR1-driven CreERT2 activity marks dormant adult HSCs which slowly but steadily contribute to unperturbed hematopoiesis. Fetal and child HSCs that are uniformly or intermediately active were also efficiently targeted. Notably, a gene ablation at distinct developmental stages, enabled by this system, resulted in different phenotypes. Similarly, an oncogenic Kras induction at distinct ages caused different spectrums of malignant diseases. These results demonstrate that the eR1-CreERT2 Tg mouse serves as a powerful resource for the analyses of both normal and malignant HSCs at all developmental stages.


Subject(s)
Adult Stem Cells , Hematopoietic Stem Cells , Animals , Mice , Kinetics , Fetus , Genetic Engineering , Mice, Transgenic , Core Binding Factor Alpha 2 Subunit/genetics
11.
Blood ; 115(8): 1610-20, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20008790

ABSTRACT

The RUNX1/AML1 gene is the most frequently mutated gene in human leukemia. Conditional deletion of Runx1 in adult mice results in an increase of hematopoietic stem cells (HSCs), which serve as target cells for leukemia; however, Runx1(-/-) mice do not develop spontaneous leukemia. Here we show that maintenance of Runx1(-/-) HSCs is compromised, progressively resulting in HSC exhaustion. In leukemia development, the stem cell exhaustion was rescued by additional genetic changes. Retroviral insertional mutagenesis revealed Evi5 activation as a cooperating genetic alteration and EVI5 overexpression indeed prevented Runx1(-/-) HSC exhaustion in mice. Moreover, EVI5 was frequently overexpressed in human RUNX1-related leukemias. These results provide insights into the mechanism for maintenance of pre-leukemic stem cells and may provide a novel direction for therapeutic applications.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Core Binding Factor Alpha 2 Subunit , Hematopoietic Stem Cells/metabolism , Leukemia/metabolism , Nuclear Proteins , Transcription Factors , Animals , Cell Cycle Proteins , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , GTPase-Activating Proteins , Hematopoietic Stem Cells/pathology , Humans , Leukemia/genetics , Leukemia/pathology , Mice , Mice, Knockout
12.
Blood Cells Mol Dis ; 44(4): 275-86, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20144877

ABSTRACT

In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.


Subject(s)
Core Binding Factor alpha Subunits/physiology , Gene Expression Regulation, Developmental , Multigene Family , Stem Cells/cytology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/physiology , Core Binding Factor alpha Subunits/genetics , G1 Phase/genetics , Genes, Helminth , Hematopoiesis/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Humans , Intestine, Small/cytology , Liver/cytology , Mice , Organ Specificity , Resting Phase, Cell Cycle/genetics , Skin/cytology , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/physiology
13.
Nat Commun ; 10(1): 5349, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836706

ABSTRACT

Increased levels and non-telomeric roles have been reported for shelterin proteins, including RAP1 in cancers. Herein using Rap1 null mice, we provide the genetic evidence that mammalian Rap1 plays a major role in hematopoietic stem cell survival, oncogenesis and response to chemotherapy. Strikingly, this function of RAP1 is independent of its association with the telomere or with its known partner TRF2. We show that RAP1 interacts with many members of the DNA damage response (DDR) pathway. RAP1 depleted cells show reduced interaction between XRCC4/DNA Ligase IV and DNA-PK, and are impaired in DNA Ligase IV recruitment to damaged chromatin for efficient repair. Consistent with its role in DNA damage repair, RAP1 loss decreases double-strand break repair via NHEJ in vivo, and consequently reduces B cell class switch recombination. Finally, we discover that RAP1 levels are predictive of the success of chemotherapy in breast and colon cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Telomere-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/metabolism , Animals , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage , DNA Ligase ATP/metabolism , DNA Repair/drug effects , DNA Repair/radiation effects , DNA-Activated Protein Kinase/metabolism , Fluorouracil/pharmacology , Gamma Rays , Genomic Instability/drug effects , Genomic Instability/radiation effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Humans , Mice, Knockout , Mutagens/toxicity , Protein Binding/drug effects , Protein Binding/radiation effects , Proto-Oncogene Proteins c-myc/metabolism , Shelterin Complex , Survival Analysis
14.
Cell Cycle ; 15(22): 3070-3081, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27657745

ABSTRACT

Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.


Subject(s)
Cell Shape , Cyclin A2/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Animals , Bone Marrow Cells/metabolism , Bromodeoxyuridine/metabolism , Cell Count , Cell Cycle , Cell Nucleus/metabolism , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p27/metabolism , DNA Damage , Erythroid Cells/cytology , Erythroid Cells/metabolism , Erythropoiesis , Green Fluorescent Proteins/metabolism , Integrases/metabolism , Mice, Inbred C57BL , Phenotype , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism
16.
Histol Histopathol ; 30(6): 661-72, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25574754

ABSTRACT

There has been considerable interest in identifying a cis-regulatory element that targets gene expression to stem cells. Such an element, termed stem cell enhancer, holds the promise of providing important insights into the transcriptional programs responsible for inherent stem cell-specific properties such as self-renewal capacity. The element also serves as a molecular handle for stem cell-specific marking, transgenesis and gene targeting, thereby becoming invaluable to stem cell research. A series of candidate enhancers have been identified for hematopoietic stem cells (HSCs). This review summarizes currently known HSC enhancers with emphasis on an intronic enhancer in the Runx1 gene which is essential for the generation and maintenance of HSCs. The element, named eR1 (+24m), is active specifically in HSCs, but not in progenitors, and is hence the most definitive HSC enhancer.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoietic Stem Cells/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Humans , Regulatory Elements, Transcriptional
17.
Gene ; 545(1): 111-6, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24792891

ABSTRACT

The RUNX1/AML1 gene is among the most frequently mutated genes in human leukaemia. However, its association with T-cell acute lymphoblastic leukaemia (T-ALL) remains poorly understood. In order to examine RUNX1 point mutations in T-ALL, we conducted an amplicon-based deep sequencing in 65 Southeast Asian childhood patients and 20 T-ALL cell lines, and detected RUNX1 mutations in 6 patients (9.2%) and 5 cell lines (25%). Interestingly, RUNX1-mutated T-ALL cases seem to constitute a subset of early immature T-ALL that may originate from differentiated T-cells. This result provides a deeper insight into the mechanistic basis for leukaemogenesis.


Subject(s)
Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Point Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Female , Genes, T-Cell Receptor gamma , Humans , Male , Sequence Deletion , Young Adult
18.
Cell Rep ; 8(3): 767-82, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25066130

ABSTRACT

The RUNX genes encode transcription factors involved in development and human disease. RUNX1 and RUNX3 are frequently associated with leukemias, yet the basis for their involvement in leukemogenesis is not fully understood. Here, we show that Runx1;Runx3 double-knockout (DKO) mice exhibited lethal phenotypes due to bone marrow failure and myeloproliferative disorder. These contradictory clinical manifestations are reminiscent of human inherited bone marrow failure syndromes such as Fanconi anemia (FA), caused by defective DNA repair. Indeed, Runx1;Runx3 DKO cells showed mitomycin C hypersensitivity, due to impairment of monoubiquitinated-FANCD2 recruitment to DNA damage foci, although FANCD2 monoubiquitination in the FA pathway was unaffected. RUNX1 and RUNX3 interact with FANCD2 independently of CBFß, suggesting a nontranscriptional role for RUNX in DNA repair. These findings suggest that RUNX dysfunction causes DNA repair defect, besides transcriptional misregulation, and promotes the development of leukemias and other cancers.


Subject(s)
Bone Marrow/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/genetics , DNA Repair , Fanconi Anemia/genetics , Leukemia/genetics , Animals , Bone Marrow/pathology , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Gene Deletion , Genetic Predisposition to Disease , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Leukemia/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL